ORGANIC
LETTERS
2006
Vol. 8, No. 16
3517-3520
C−C Coupling Reactions of Aryl
Bromides and Arylsiloxanes in Water
Catalyzed by Palladium Complexes of
Phosphanes Modified with Crown Ethers
AÄ lvaro Gordillo, Ernesto de Jesu´s,* and Carmen Lo´pez-Mardomingo
Departamento de Qu´ımica Orga´nica and Departamento de Qu´ımica Inorga´nica,
UniVersidad de Alcala´, 28871 Alcala´ de Henares (Madrid), Spain
Received May 18, 2006
ABSTRACT
The complexes [PdCl2L2], where L is a crown-ether-containing triarylphosphane, catalyze the formation of biaryls from arylsiloxanes and aryl
bromides with high yields in water as solvent and under air. The water-insoluble catalysts [PdCl2(PhCN)2] and [PdCl2(PPh3)2] are also efficient,
although they decompose more quickly to form black Pd0.
The palladium-catalyzed aryl-aryl cross-coupling reaction
is a simple, efficient, and versatile route to the formation of
carbon-carbon bonds that is commonly used in modern
organic synthesis1 to give complex products in a one-step
reaction between an aryl halide and an organometallic
species, for instance, an organoborane (Suzuki)2 or orga-
nostannane reagent (Stille reaction).3 Organosilanes are
remarkable for their low toxicity, environmental benignity,
and high chemical stability, and these advantages can be
reinforced by using water as a cheap, nontoxic, and nonflam-
mable solvent.4 Hiyama showed 20 years ago that trans-
metalation of organosilanes takes place smoothly after their
activation with the fluoride anion.5 Subsequent developments6
showed that sodium hydroxide is an effective promoter7 that
is able to activate the coupling of arylsiloxanes6b,8 in water-
containing organic solvents.9 Recently, Wolf and Lerebours
have described a NaOH-promoted coupling method for the
(4) (a) Cornils, B.; Herrmann, W. A. Aqueous-Phase Organometallic
Catalysis: Concepts and Applications, 2nd ed.; Wiley-VCH: Weinheim,
Germany, 2004. (b) Joo´, F.; Katho´, AÄ . J. Mol. Catal. A 1997, 116, 3-26.
(c) Genet, J. P.; Savignac, M. J. Organomet. Chem. 1999, 576, 305-317.
(d) Li, C.-J. Chem. ReV. 2005, 105, 3095-3165.
(5) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920. (b)
Hatanaka, Y.; Fukushima, S.; Hiyama, T. Chem. Lett. 1989, 1711-1714.
(c) Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Chapter
10. (d) Hiyama, T. J. Organomet. Chem. 2002, 653, 58-61 and references
therein.
(6) (a) Denmark, S. E.; Sweis. R. F. In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH:
Weinheim, Germany, 2004; Chapter 4. (b) Handy, C. J.; Manoso, A. S.;
McElroy, W. T.; Seganish, W. M.; DeShong, P. Tetrahedron 2005, 61,
12201-12225. (c) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35,
835-846. (d) Denmark, S. E.; Ober, M. H. Aldrichimica Acta 2003, 36,
75-85.
(1) (a) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. ReV. 2002, 102, 1359-1470. (b) Echavarren, A. M.; Cardenas, D.
J. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Chapter 1.
(2) (a) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168. (b) Suzuki,
A. Chem. ReV. 1995, 95, 2457-2483. (c) Herrmann, W. In Applied
Homogeneous Catalysis with Organometallic Compounds, 2nd ed.; Cornils,
B., Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp
591-598.
(7) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett.
1997, 38, 439-442.
(8) (a) Tamao, K.; Kobayashi, K.; Ito, Y. Tetrahedron Lett. 1989, 30,
6051-6054. (b) Shibata, K; Miyazawa, K.; Goto, Y. Chem. Commun. 1997,
1309-1310. (c) Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64,
1684-1688. (d) Mowery, M. E.; DeShong, P. Org. Lett. 1999, 1, 2137-
2140.
(3) (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524.
(b) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704-
4734 and references therein.
10.1021/ol061221y CCC: $33.50
© 2006 American Chemical Society
Published on Web 07/01/2006