Page 5 of 6
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
Hydroxy and α-Amino Phenylacetic Acids by Kinetic Resolution. Angew.
Chem. Int. Ed. 2016, 55, 2856-2860.
(10) Khusnutdinova, J. R.; Milstein, D. Metal–Ligand Cooperation.
Angew. Chem. Int. Ed. 2015, 54, 12236-12273
(6) (a) Cheng, G. –J.; Yang, Y. –F.; Liu, P.; Chen, P.; Sun, T. –Y.; Li,
G.; Zhang, X.; Houk, K. N.; Yu, J. –Q.; Wu, Y. D. Role of N-Acyl Amino
Acid Ligands in Pd(II)-Catalyzed Remote C−H Activation of Tethered
Arenes. J. Am. Chem. Soc. 2014, 136, 894−897. (b) Cheng, G. –J.; Chen,
P.; Sun, T. –Y.; Zhang, X.; Yu, J. –Q.; Wu, Y. –D. A Combined IM-
MS/DFT Study on [Pd(MPAA)]-Catalyzed Enantioselective C-H Activa-
tion: Relay of Chirality through a Rigid Framework. Chem. Eur. J. 2015,
21, 11180 -11188. (c) Haines, B. E.; Yu, J. –Q.; Musaev, D. G. Enantiose-
lectivity Model for Pd-Catalyzed C−H Functionalization Mediated by the
Mono-N-protected Amino Acid (MPAA) Family of Ligands. ACS Catal.
2017, 7, 4344−4354.
(11) (a) Tomás-Mendivil, E.; Diez, J.; Cadierno, V. Conjugate addition
of arylboronic acids to α,β-unsaturated carbonyl compounds in aqueous
medium using Pd(II) complexes with dihydroxy- 2,2’-bipyridine ligands:
homogeneous or heterogeneous nano-catalysis? Catal. Sci. Technol.,
2011, 1, 1605-1615. (b) Shen, C.; Yu, F.; Chu, W. –K.; Xiang, J.; Tan, P.;
Luo, Y.; Feng, H.; Guo, Z. -Q.; Leung, C. -F.; Lau, T. –C. Synthesis,
structures and photophysical properties of luminescent cyanoruthenate(II)
complexes with hydroxylated bipyridine and phenanthroline ligands. RSC
Adv. 2016, 6, 87389-87399. (c) Yu, F.; Shen, C.; Zheng, T.; Chu, W. –K.;
Xiang, J.; Luo, Y.; Ko, C.-C.; Guo, Z. –Q.; Lau, T. –C. Acid–Base Behav-
iour in the Absorption and Emission Spectra of Ruthenium(II) Complexes
with Hydroxy-Substituted Bipyridine and Phenanthroline Ligands. Eur. J.
Inorg. Chem. 2016, 3641-3648.
(12) Ying, C. –H.; Yan, S. –B.; Duan, W. –L. 2-Hydroxy-1,10-
phenanthroline vs 1,10-Phenanthroline: Significant Ligand Acceleration
Effects in the Palladium-Catalyzed Oxidative Heck Reaction of Arenes.
Org. Lett. 2014, 16, 500-503. (b) Ying, C. –H.; Duan, W. –L. Palladium-
catalyzed direct C–H allylation of arenes without directing groups. Org.
Chem. Front. 2014, 1, 546–550
(13) (a) Wang, P.; Li, G. –C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P. –
X.; Yu, J. –Q. Ligand-Promoted meta-C−H Amination and Alkynylation.
J. Am. Chem. Soc. 2016, 138, 14092−14099. (b) Shi, H.; Wang, P.; Suzu-
ki, S.; Farmer, M. E.; Yu, J. –Q. Ligand Promoted meta-C−H Chlorination
of Anilines and Phenols. J. Am. Chem. Soc. 2016, 138, 14876−14879. (c)
Wang, P.; Farmer, M. E.; Yu, J. –Q. Ligand-Promoted meta-C–H Func-
tionalization of Benzylamines. Angew. Chem. Int. Ed. 2017, 56, 5125 –
5129. (d) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.;
Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K. –S.; Yu, J. –Q.
Ligand-accelerated non-directed C–H functionalization of arenes. Nature,
2017, 551, 489-493.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) (a) Musaev, D. G.; Kaledin, A.; Shi, B. –F.; Yu, J. –Q. Key Mech-
anistic Features of Enantioselective C−H Bond Activation Reactions
Catalyzed by [(Chiral Mono-N-Protected Amino Acid)− Pd(II)] Complex-
es. J. Am. Chem.Soc. 2012, 134, 1690−1698. (b) Cong, X.; Tang, H.; Wu,
C. Zeng, X. Role of Mono-N-protected Amino Acid Ligands in Palladi-
um(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient
(Hetero)arenes: Experimental and Computational Studies. Organometal-
lics 2013, 32, 6565−6575. (c) Haines B. E.; Musaev, D. G. Factors
Impacting the Mechanism of the Mono-N-Protected Amino Acid Ligand-
Assisted and Directing-Group-Mediated C−H Activation Catalyzed by
Pd(II) Complex. ACS Catal. 2015, 5, 830−840. (d) Plata, R. E.; Hill, D.
E.; Haines, B. E.; Musaev, D. G.; Chu, L.; Hickey, D. P.; Sigman, M. S.;
Yu, J. Q.; Blackmond, D. G. A Role for Pd(IV) in Catalytic Enantioselec-
tive C−H Functionalization with Monoprotected Amino Acid Ligands
under Mild Conditions. J. Am. Chem. Soc. 2017, 139, 9238−9245.
(8) (a) Kawahara, R.; Fujita, K.; Yamaguchi, R. Dehydrogenative Oxi-
dation of Alcohols in Aqueous Media Using Water-Soluble and Reusable
Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. J. Am. Chem.
Soc. 2012, 134, 3643-3646. (b) Wang, W. –H. Muckerman, J. T.; Fujita,
E.; Himeda, Y. Mechanistic Insight through Factors Controlling Effective
Hydrogenation of CO2 Catalyzed by Bioinspired Proton-Responsive
Iridium(III) Complexes. ACS Catal. 2013, 3, 856-860. (c) Zeng, G.;
Sakaki, S.; Fujita, K.; Sano, H; Yamaguchi, R. Efficient Catalyst for
Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and
Experimental Studies. ACS Catal. 2014, 4, 1010-1020. (d) Fujita, K.;
Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. Homogeneous Perdehydro-
genation and Perhydrogenation of Fused Bicyclic N-Heterocycles Cata-
lyzed by Iridium Complexes Bearing a Functional Bipyridonate Ligand. J.
Am. Chem. Soc. 2014, 136, 4829-4832. (e) Wang, R.; Ma, J.; Li, F. Syn-
thesis of α-Alkylated Ketones via Tandem Acceptorless Dehydrogena-
tion/α-Alkylation from Secondary and Primary Alcohols Catalyzed by
Metal−Ligand Bifunctional Iridium Complex [Cp*Ir(2,2′- bpyO)(H2O)]. J.
Org. Chem. 2015, 80, 10769−10776. (f) Xu, Z.; Yan, P.; Li, H.; Liu, K.;
Liu, X.; Jia, S.; Zhang, Z. C. Active Cp*Iridium(III) Complex with ortho-
Hydroxyl Group Functionalized Bipyridine Ligand Containing an Elec-
tron-Donating Group for the Production of Diketone from 5-HMF. ACS
Catal. 2016, 6, 3784-3788. (g) Suna, Y.; Himeda, Y.; Fujita, E.; Mucker-
man, J. T.; Ertem, M. Z. Iridium Complexes with Proton-Responsive
Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation.
ChemSusChem 2017, 10, 4535-4543. (h) Siek, S.; Burks, D. B.; Gerlach,
D. L.; Liang, G.; Tesh, J. M.; Thompson, C. R.; Qu, F.; Shankwitz, J. E.;
Vasquez, R. M.; Chambers, N.; Szulczewski, G. J.; Grotjahn, D. B.;
Webster, C. E.; Papish, E. T. Iridium and Ruthenium Complexes of N-
Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for
Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogena-
tion: The Role of the Alkali Metal. Organometallics 2017, 36, 1091-1106.
(9) (a) Nieto, I.; Livings, M. S.; Sacci III, J. B.; Reuther, L. E.; Zeller,
M.; Papish, E. T. Transfer Hydrogenation in Water via a Ruthenium
Catalyst with OH Groups near the Metal Center on a bipy Scaffold. Or-
ganometallics 2011, 30, 6339−6342. (b) Moore, C. M.; Szymczak,ꢀ N. K.
6,6’-Dihydroxy terpyridine: a proton-responsive bifunctional ligand and
its application in catalytic transfer hydrogenation of ketones. Chem.
Commun., 2013, 49, 400-402. (c) Roy, B. C.; Chakrabarti, K.; Shee, S.;
Paul, S.; Kundu, S. Bifunctional RuII-Complex-Catalysed Tandem C-C
Bond Formation: Efficient and Atom Economical Strategy for the Utilisa-
tion of Alcohols as Alkylating Agents. Chem. Eur. J. 2016, 22, 18147 –
18155.
(14) Ye, M.; Gao, G- -L. Edmunds, A. J. F.; Worthington, P. A.; Mor-
ris, J. A.; Yu, J. –Q. Ligand-Promoted C3-Selective Arylation of Pyridines
with Pd Catalysts: Gram-Scale Synthesis of (±)-Preclamol. J. Am. Chem.
Soc. 2011, 133, 19090–19093.
(15) For a complete account of the methods for direct functionalization
of pyridines: Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. C−H
Functionalization of Azines. Chem. Rev. 2017, 117, 9302−9332.
(16) (a) Albéniz, A. C.; Espinet, P.; Lin, Y. –S. Involvement of Intra-
molecular Hydride Transfer in the Formation of Alkanes from Palladium
Alkyls. Organometallics, 1997, 16, 4030-4032. (b) Martín-Ruiz, B.;
Pérez-Ortega, I.; Albéniz, A. C. Organometallics, 2018, 37, 1665−1670.
(17) Preliminary experiments with [2,2’-bipyridin]-6,6’(1H,1’H)-dione
(bipy-6,6’-(OH)2), similar to those collected in Scheme 5, showed that its
behavior is analogous to that of bipy-6-OH. A mixture of bipy-6,6’-(OH)2
and [PdBr(C6F5)(NCMe)2] in pyridine led only to complexes 8 and 9, but
new species formed upon addition of Cs2CO3. When this mixture was
heated at 140 ˚C for 30 min, 63% of the coupling product C6F5-py was
obtained (Figure S7).
(18) These energy differences are small and although the meta activa-
tion is clearly preferred, small amounts of the other isomers are also
formed (Scheme 1). The activation energies found are similar to those
calculated before for the intramolecular acetate C-H cleavage of pyridine:
Petit, A.; Flygare, J.; Miller, A. T.; Winkel, G.; Ess, D. H. Transition-State
Metal Aryl Bond Stability Determines Regioselectivity in Palladium
Acetate Mediated C H Bond Activation of Heteroarenes. Org. Lett. 2012,
14, 3680-3683.
(19) The calculations show that the reductive elimination and the
deprotonation of the ligand in c2 are very close in energy (energy barriers
13.3 vs 14.9 kcal mol–1, Figures 3 and Figure S77). We have depicted one
of these pathways (deprotonation first) in Scheme 6.
ACS Paragon Plus Environment