Communication
Organic & Biomolecular Chemistry
thetic method provides access to diversely substituted 1,3-di-
substituted cyclohexenes, and may potentially be applied to a
larger range of substrates, including naphthalenic and quinoli-
nic fragments, which constitute valuable building blocks.
Particularly, carbocycles containing an all carbonated quatern-
ary center can be targeted. Complementary experimental work
is required to elucidate the exact mechanism of the reaction
and will be presented in due course.
For reviews, see: (e) S. R. Harutyunyan, T. den Hartog,
K. Geurts, A. Minnaard and B. Feringa, Chem. Rev., 2008,
108, 2824–2852; (f) A. Alexakis, J. E. Backvall, N. Krause,
O. Pàmies and M. Diéguez, Chem. Rev., 2008, 108, 2796–
2823; (g) A. Alexakis, N. Krause and S. Woodward, Copper-
Catalyzed Asymmetric Synthesis, Wiley-VCH, Weinheim,
2014.
10 For recent examples of palladium-catalyzed allylic substi-
tutions applied to cyclohexenenyl substrates, see:
(a) T. R. Newhouse, P. S. J. Kaib, A. W. Gross and E. J. Corey,
Org. Lett., 2013, 15, 1591–1593; (b) D. Wang and K. Szabó,
Org. Lett., 2017, 19, 1622–1625; (c) R. Bellini, M. Magre,
M. Biosca, P.-O. Norrby, O. Pàmies, M. Diéguez and
C. Moberg, ACS Catal., 2016, 6, 1701–1712; (d) D. T. Racys,
J. Eastoe, P.-O. Norrby, I. Grillo, S. E. Rogers and
G. C. Lloyd-Jones, Chem. Sci., 2015, 6, 5793–5801. For
reviews see: (e) B. M. Trost and M. L. Crawley, Chem. Rev.,
2003, 103, 2921–2944; (f) B. M. Trost, Tetrahedron, 2015,
71, 5708–5733.
11 (a) A. V. Malkov, S. L. Davis, I. R. Baxendale, W. L. Mitchell
and P. Kočovský, J. Org. Chem., 1999, 64, 2751–2764;
(b) T. Muraoka, I. Matsuda and K. Itoh, J. Am. Chem. Soc.,
2000, 122, 9552–9553; (c) A. Kolb, W. Zuo, J. Siewert,
K. Harms and P. von Zezschwitz, Chem. – Eur. J., 2013, 19,
16366–16373.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
The University of Reims Champagne Ardenne for financial
support and Carine Machado and Anthony Robert
(ICMR-UMR 7312) for technical assistance are gratefully
acknowledged.
Notes and references
1 (a) F. Giacomina, D. Riat and A. Alexakis, Org. Lett., 2010,
12, 5156–5159; (b) A. Fürstner, A. F. Hill, M. Liebla and 12 (a) I. L. Lysenko, K. Kim, H. G. Lee and J. K. Cha, J. Am.
J. D. E. T. Wilton-Ely, Chem. Commun., 1999, 601–602;
(c) F. Giacomina and A. Alexakis, Eur. J. Org. Chem., 2001,
6710–6721.
Chem. Soc., 2008, 130, 15997–16002; (b) A. M. Lauer,
F. Mahmud and J. Wu, J. Am. Chem. Soc., 2011, 133, 9119–
9123.
2 J. D. Cuthbertson and D. W. C. MacMillan, Nature, 2015, 13 X. Han, Y. Zhang and J. Wu, J. Am. Chem. Soc., 2010, 132,
519, 74–77. 4104–4106.
3 (a) J. M. Pérez, C. Maquiljn, D. J. Ramjn and A. Baeza, 14 J. Agarwal, C. Commandeur, M. Malacria and
Asian J. Org. Chem., 2017, 6, 1440–1444; (b) T. Ishikawa,
T. Aikawa, Y. Mori and S. Saito, Org. Lett., 2003, 5, 51–54.
4 (a) V. J. Meyer and M. Niggemann, Eur. J. Org. Chem., 2011,
3671–3674; (b) T. Saito, Y. Nishimoto, M. Yasuda and
A. Baba, J. Org. Chem., 2006, 71, 8516–8522.
5 P. Trilloa and A. Baezaa, Adv. Synth. Catal., 2017, 359,
1735–1741.
6 (a) K. Chen, H. J. Chen, J. Wong, J. Yang and
S. Thorimbert, Tetrahedron, 2013, 69, 9398–9405.
15 (a) S. Harada, N. Kowase, T. Taguchi and Y. Hanzawa,
Tetrahedron Lett., 1997, 38, 1957–1960; (b) V. Gandon and
J. Szymoniak, Chem. Commun., 2002, 12, 1308–1309;
(c) J. A. Spencer, C. Jamieson and E. P. A. Talbot, Org. Lett.,
2017, 19, 3891–3894.
16 J.-L. Vasse, A. Joosten, C. Denhez and J. Szymoniak, Org.
Lett., 2005, 7, 4887–4889.
S. A. Pullarkat, ChemCatChem, 2013, 5, 3882–3888; 17 A. Joosten, E. Lambert, J.-L. Vasse and J. Szymoniak, Org.
(b) J. A. McCubbin, H. Hosseini and O. V. Krokhin, J. Org.
Chem., 2010, 75, 959–962.
7 J. S. Yadav, B. V. S. Reddy, K. V. Rao, P. P. Rao, K. S. Raj,
Lett., 2010, 12, 5128–5131.
18 S. Harada, N. Kowase, N. Tabuchi, T. Taguchi, Y. Dobashi,
A. Dobashi and Y. Hanzawa, Tetrahedron, 1998, 54, 753–766.
A. R. Prasad, A. Prabhakar and B. Jagadeesh, Synlett, 2006, 19 S. Clergue and J.-L. Vasse, Org. Lett., 2014, 16, 1506–1509.
3447–3450.
20 A similar elimination reaction has been previously
observed in the case of 4-methoxybutylstannane in the
presence of BF3·OEt2, see: I. Fleming and M. Rowley,
Tetrahedron, 1986, 42, 3181–3198.
8 R. M. Suarez, D. Peña, A. J. Minnaard and B. L. Feringa,
Org. Biomol. Chem., 2005, 3, 729–731.
9 For recent examples of copper-catalyzed allylic substi-
tutions applied to cyclohexenenyl substrates see: 21 Z. Peng, T. Blümke, P. Mayer and P. Knochel, Angew. Chem.,
(a) J.-B. Langlois, D. Emery, J. Mareda and A. Alexakis, Int. Ed., 2010, 49, 8516–8519.
Chem. Sci., 2012, 3, 1062–1069; (b) J.-B. Langlois and 22 C. P. Casey and N. A. Strotman, J. Am. Chem. Soc., 2004,
A. Alexakis, Chem. Commun., 2009, 3868–3870; (c) H. You, 126, 1699–1674.
E. Rideau, M. Sidera and S. P. Fletcher, Nature, 2015, 517, 23 (a) P. Wipf and H. Jahn, Tetrahedron, 1996, 52, 12853–
351–355; (d) E. Rideau, H. You, M. Sidera, T. D. W. Claridge
and S. P. Fletcher, J. Am. Chem. Soc., 2017, 139, 5614–5624.
12910; (b) P. Wipf and R. Nunes, Tetrahedron, 2004, 60,
1269–1279.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2019