Cao & Wang
COMMUNICATION
supported the hypothesis that the intermediates in these
reactions are different with those previously reported. To
verify whether acyl cation was formed in this reaction, a
control experiment was conducted by addition of
methanol under standard conditions. It was found that
no methyl ester was detected. However, when an acid
catalyst (p-TsOH) was added, methyl ester was obtained
in 26% yield (Scheme 3, Eq. 4). It was assumed that the
addition of an acid catalyst facilitated the acetal forma-
tion between benzaldehyde and methanol. The lack of
methyl ester formation in the absence of an acetalyza-
tion catalyst reduces the likelihood of acyl iodide or acyl
radical intermediates as the key reactive species.
A proposed mechanism was presented based on the
above experimental results as well as the literature re-
ports (Scheme 4).[29-31,44,45] Initially, tert-butoxyl,
tert-butylperoxyl radicals, iodine and a hydroxyl anion
are generated via oxidation of n-Bu4NI by TBHP. The
tert-butoxyl or tert-butylperoxyl radical subsequently
abstracts a hydrogen atom from the aminal specie A,
which is generated from the reaction of tetrazole 1 and
the aldehyde 2, and the resulting radical species B is
further oxidized to acylated tetrazole C. Finally, a
1,5-dipole (nitrileimine) D is generated by elimination
of nitrogen of acylated tetrazole C, followed by cycliza-
tion to provide the desired product 3.
reaction was also realized in this catalytic system.
Acknowledgement
This project was financially supported by the Na-
tional Natural Science Foundation of China (No.
21302014) and the Natural Science Foundation for Col-
leges and Universities of Jiangsu Province (No.
13KJB150002).
References
[1] Mitschke, U.; Bäuerle, P. J. Mater. Chem. 2000, 10, 1471.
[2] Rehmann, N.; Ulbricht, C.; Köhnen, A.; Zacharias, P.; Gather, M. C.;
Hertel, D.; Holder, E.; Meerholz, K.; Schubert, U. S. Adv. Mater.
2008, 20, 129.
[3] Chan, L.-H.; Lee, R.-H.; Hsieh, C.-F.; Yeh, H.-C.; Chen, C.-T. J. Am.
Chem. Soc. 2002, 124, 6469.
[4] Zhang, T.; Zhu, C.; Ma, Y.; Wang, C.; Shen, Y. Chin. J. Chem. 2013,
31, 779.
[5] Al-Talib, M.; Tashtoush, H.; Odeh, N. Synth. Commun. 1990, 20,
1811.
[6] Kerr, V. N.; Ott, D. G.; Hayes, F. N. J. Am. Chem. Soc. 1960, 82,
186.
[7] Short, F. W.; Long, L. M. J. Heterocycl. Chem. 1969, 6, 707.
[8] Klingsberg, E. J. Am. Chem. Soc. 1958, 80, 5786.
[9] Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis 1983, 842.
[10] Jedlovska, E.; Lesko, J. Synth. Commun. 1994, 24, 1879.
[11] Mruthyunjayaswamy, B. H. M.; Shanthaveerappa, B. K. Indian J.
Heterocycl. Chem. 1998, 8, 31.
Scheme 4 Proposed mechanism
[12] Faidallah, H. M.; Sharshira, E. M.; Basaif, S. A.; A-Ba-Oum, A. E. K.
Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 67.
[13] Rostamizadeh, S.; Ghasem Housaini, S. A. Tetrahedron Lett. 2004,
34, 8753.
+
OH
t-BuOOH
t-BuO
[14] Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetra-
hedron Lett. 2006, 47, 6983.
[15] Dobrota, C.; Paraschivescu, C. C.; Dumitru, I.; Matache, M.; Baciu,
I.; Ruta, L. L. Tetrahedron Lett. 2009, 50, 1886.
I
1/2 I2
[16] Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.;
Chang, J. J. Org. Chem. 2013, 78, 10337.
H2O + t-BuOO
-BuOOH + OH
t
N
N
[17] Jakopin, Z.; Dolenc, M. S. Curr. Org. Chem. 2008, 12, 850.
[18] Huisgen, R.; Sauer, J.; Sturm, H. J. Angew. Chem. 1958, 70, 272.
[19] Fürmeier, S.; Metzger, J. O. Eur. J. Org. Chem. 2003, 885.
[20] Reichart, B.; Kappe, C. O. Tetrahedron Lett. 2012, 53, 952.
[21] Wang, L.; Cao, J.; Chen, Q.; He, M. J. Org. Chem. 2015, 80, 4743.
[22] Gao, J.; Wang, G. W. J. Org. Chem. 2008, 73, 2955.
[23] Ghosh, S. C.; Ngiam, J. S. Y.; Chai, C. L. L.; Seayad, A. M.; Dang, T.
T.; Chen, A. Adv. Synth. Catal. 2012, 354, 1407.
N
N
O
OH
N
N
N
+
H
H
Ar2
Ar1
Ar1
N
Ar2
A
1
2
t-BuO
or
-BuOO
N
N
N
N
O
OH
Ar2
[O]
N
t
N
Ar1
N
Ar1
N
Ar2
[24] Cadoni, R.; Porcheddu, A.; Giacomelli, G.; De Luca, L. Org. Lett.
2012, 14, 5014.
-BuOH
or TBHP
t
C
B
[25] Tillack, A.; Rudloff, I.; Beller, M. Eur. J. Org. Chem. 2001, 523.
[26] Yoo, W.; Li, C. J. Am. Chem. Soc. 2006, 128, 13064.
[27] Kovi, K. E.; Wolf, C. Org. Lett. 2007, 9, 3429.
[28] Seo, S.; Marks, T. J. Org. Lett. 2008, 10, 317.
[29] Tank, R.; Pathak, U.; Vimal, M.; Bhattacharyya, S.; Pandey, L. K.
Green Chem. 2011, 13, 3350.
N N
O
C
Ar2
N N C Ar1
Ar1
Ar2
O
-N2
3
D
[30] Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Chai, C. L.
L.; Chen, A. J. Org. Chem. 2012, 77, 8007.
Conclusions
[31] Tan, B.; Toda, N.; Barbas, C. F. Angew. Chem. Int. Ed. 2012, 51,
12538.
[32] Porcheddu, A.; De Luca, L. Adv. Synth. Catal. 2012, 354, 2949.
[33] Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem.
Int. Ed. 2012, 51, 3231.
In summary, we have developed an organocatalytic
oxidative amidation of aldehydes with tetrazoles to de-
liver 1,3,4-oxadiazoles via one-pot fashion using TBAI/
TBHP system. Good compatibilities, good yields, and
use of readily available starting materials render this
protocol more attractive and advantageous. Gram-scale
[34] Zhang, M.; Wu, X.-F. Tetrahedron Lett. 2013, 54, 1059.
[35] Vanjari, R.; Guntreddi, T.; Singh, K. N. Green Chem. 2014, 16, 351.
1242
© 2015 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2015, 33, 1239—1243