Journal of the American Chemical Society
Page 4 of 5
Kumadaꢀtype coupling with Grignard reagents under Nakamura’s
(1) (a) MetalꢀCatalyzed CrossꢀCoupling Reactions; Diederich, F., Stang,
15
P. J., Eds; WileyꢀVCH: Weinhein, Germany, 1998. (b) MetalꢀCatalyzed
CrossꢀCoupling Reactions and More; de Meijere, A., Bräse, S., Oestreich,
M., Eds; WileyꢀVCH: Weinheim, Germany, 2014. (c) Negishi, E.ꢀi. Anꢀ
gew. Chem. Int. Ed. 2011, 50, 6738. (d) Johansson Seechurn, C. C. C.;
Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
conditions. As a result, the whole synthetic sequence provides a
rapid and modular approach to access functionalized chromanes, a
16
common structural motif found in bioactive compounds.
To gain insights about how the C−C bond is cleaved in this keꢀ
toneꢀSMC reaction, control experiments were carried out (Scheme
5
1, 5062.
2) (a) Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6722. (b) Brown, D.
(
3
). In addition to oxidative addition of Rh(I) into ketone α C−C
G.; Boström, J. J. Med. Chem. 2016, 59, 4443.
bond, a potential alternative way involves 1,2ꢀaddition of the aryl
nucleophile into the carbonyl or imine intermediate, followed by a
(3) For recent reviews, see: (a) Yu, D.ꢀG.; Li, B.ꢀJ; Shi, Z.ꢀJ. Acc. Chem.
Res. 2010, 43, 1486. (b) Rosen, B. M.; Quasdorf, K.W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.ꢀM.; Garg, N. K.; Percec, V. Chem. Rev. 2011,
111, 1346. (c) Tobisu, M.; Chatani, N. Top. Curr. Chem. 2016, 374, 1. (d)
Zarate, C.; van Gemmeren, M.; Somerville, R. J.; Martin, R. Adv. Organꢀ
omet. Chem. 2016, 66, 143. For recent examples, see: (e) Chaꢀ
tupheeraphat, A.; Liao, H.ꢀH.; Srimontree, W.; Guo, L.; Minenkov, Y.;
Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
(f) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.ꢀF., Houk,
K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
17
βꢀcarbon elimination process. To investigate the hypothetical βꢀ
carbon elimination pathway, tertiary alcohol 55 and amine 57
were independently synthesized, which were then subjected to the
standard conditions (in the absence of ketone and boronate reacꢀ
tants). The desired SMC product 1c was not observed; instead,
olefin 56 was produced in a quantitative yield. Combining the fact
that olefin 56 was not observed in our standard ketoneꢀSMC reacꢀ
tions (Table 1), the βꢀcarbon elimination pathway is unlikely.
Hence, the results of these control experiments are consistent with
our hypothesis (Scheme 1B) that the C−C bond cleavage involves
oxidative addition with a Rh(I) species.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(4) (a) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46,
5
864. (b) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413. (c) Blakey,
S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046. (d)
Weires, N. A.; Baker, E. L; Garg, N. K. Nat. Chem. 2016, 8, 75. (e)
Yadav, M. R.; Nagaoka, M.; Kashihara, M.; Zhong, R. L.; Miyazaki, T.;
Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2017, 139, 9423.
Scheme 3. Control Experiments to Examine an Alternative
βꢀCarbon Elimination Pathway
(5) For selected examples of other electrophiles used in SMC reactions,
see: (a) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128,
1
5964. (b) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Comꢀ
mun. 2015, 6, 7508. (c) Wang, J.; Qin, T.; Chen, T. G.; Wimmer, L.; Edꢀ
wards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew.
Chem. Int. Ed. 2016, 55, 9676. (d) Zhang, L.; Lovinger, G. J.; Edelstein,
E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016,
3
51, 70.
6) For a related coupling of arylboronates using highly strained ketones,
see: Matsuda, T.; Makino, M.; Murakami, M. Org. Lett. 2004, 6, 1257.
7) For seminal works on coupling of arylboronates using 8ꢀ
(
(
acylqunolines, see: (a) Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.;
Wang, J. Angew. Chem. Int. Ed. 2012, 51, 12334. (b) Dennis, J. M.; Comꢀ
pagner, C. T.; Dorn, S. K.; Johnson, J. B. Org. Lett. 2016, 18, 3334.
(8) For selected recent reviews, see: (a) Rybtchiski, B.; Milstein, D. Anꢀ
gew. Chem. Int. Ed. 1999, 38, 870. (b) Murakami, M.; Ito, Y. Top. Organꢀ
omet. Chem. 1999, 3, 97. (c) Ruhland, K. Eur. J. Org. Chem. 2012, 2683.
In summary, we describe the development of a SMC reaction
between simple ketones and arylboronates via Rhꢀcatalyzed actiꢀ
vation of unstrained C−C bonds. While the efficiency of the reacꢀ
tion still has room for further improvement, the general applicaꢀ
bility is nevertheless encouraging. The use of unstrained C−C
bond as electrophiles in cross couplings should have broad impliꢀ
cations. Detailed mechanistic study (experimental and computaꢀ
tional) and efforts to accelerate the reaction rate is ongoing.
(d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (e) C−C
Bond Activation; Dong, G., Ed.; Topics in Current Chemistry 346; Springꢀ
er: Berlin, 2014. (f) Cleavage of Carbon−Carbon Single Bonds by Transiꢀ
tion Metals; Murakami, M., Chatani, N., Eds.; WileyꢀVCH: Weinheim,
2
015. (g) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (h) Muraꢀ
kami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759. (i) Kim, D.ꢀS.;
Park, W.ꢀJ.; Jun, C.ꢀH. Chem. Rev. 2017, 117, 8977. (j) Fumagalli, G.;
Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
(9) (a) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int.
ASSOCIATED CONTENT
Ed. 2011, 50, 7740. (b) Mack, D. J.; Njardarson, J. T. ACS Catal. 2013, 3,
272. (c) Chen, P.; Billett, B.; Tsukamoto, T.; Dong, G. ACS Catal. 2017,
Supporting Information Experimental procedures; spectral
data. This material is available free of charge via the Internet at
http://pubs.acs.org.
7
, 1340.
10) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (b) Jun,
(
C.ꢀH.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880. (c) Jun, C.ꢀH.; Lee, H.;
Lim, S.ꢀG. J. Am. Chem. Soc. 2001, 123, 751.
AUTHOR INFORMATION
(11) (a) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546. (b)
Xia, Y.; Wang, J.; Dong, G. Angew. Chem. Int. Ed. 2017, 56, 2376.
(12) (a) Yamamoto, T.; Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc.
1971, 93, 3350. (b) PerezꢀRodriguez, M.; Braga, A. A.; GarciaꢀMelchor,
M.; PerezꢀTemprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.;
Alvarez, R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650.
Corresponding Author
Notes
(
c) Motti, E.; Della Ca, N.; Deledda, S.; Fava, E.; Panciroli, F.; Catellani,
M. Chem. Commun. 2010, 46, 4291.
13) We have attempted the use of cyclohexanones and –heptanones as
The authors declare no competing financial interests.
(
ACKNOWLEDGMENT
substrates; unfortunately, they do not yield any desired product. The reaꢀ
son is unclear at this moment.
(
14) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem.
Soc. 2003, 125, 1698.
15) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009,
31, 9590.
16) Pratap, R.; Ram, V. Ji. Chem. Rev. 2014, 114, 10476.
This project was supported by NIGMS (R01GM109054). Y. X.
acknowledges the International Postdoctoral Exchange Fellowship
Program 2015 from the Office of China Postdoctoral Council (No.
38 Document of OCPC, 2015).
(
1
(
REFERENCES
ACS Paragon Plus Environment