10.1002/chem.201900743
Chemistry - A European Journal
COMMUNICATION
[6] M. Mentzel, Hoffmann, H. M. R., J. Prakt. Chem. 1997, 339, 517.
[7] a) D. L. Comins, Synlett 1992, 615; b) P. G. M. Wuts, T. W. Greene,
Greene’s Protective Groups in Organic Synthesis 2007, Ch. 4, Ch. 7 (Wiley).
[8] W. S. Bechara, G. Pelletier, A. B. Charette, Nat. Chem. 2012, 4, 228.
[9] Books on flow microreactor synthesis: a) W. Ehrfeld, V. Hessel, H. Löwe,
Microreactors, Wiley-VCH, Weinheim, 2000; b) V. Hessel, S. Hardt, H.
Löwe, Chemical Micro Process Engineering, Wiely-VCH, Weinheim, 2004;
c) J. Yoshida, Flash Chemistry. Fast Organic Synthesis in Microsystems,
Wiley-Blackwell, Oxford, 2008; d) Micro Precess Engineering; (Eds.: V.
Hessel, A. Renken, J. C. Schouten, J. Yoshida), Wiley-Blackwell, Oxford,
2009; e) Microreactors in Organic Chemistry and Catalysis, 2nd ed. (Ed.: T.
Wirth), Wiley, Haboken, 2013. f) Microreactors in Preparative
Chemistry; (Ed.: W. Reschetilowski), Wiley-VCH, Weinheim, 2013; g)
F. Darvas, V. Hessel, G. Dorman, Flow Chemistry, DeGruyter: Berlin,
2014; h) J. Yoshida, Basics of Flow Microreactor Synthesis, Springer,
Tokyo, 2015; i) Organometallic Flow Chemistry; (Ed.: T.
Noël), Springer, 2016.
[10] Reviews on flow microreactor synthesis: a) B. P. Mason, K. E. Price, J.
L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300;
b) B. Ahmed-Omer, J. C. Brandt, T. Wirth, Org. Biomol. Chem. 2007, 5,
733; c) P. Watts, C. Wiles, Chem. Commun. 2007, 443; d) T. Fukuyama, M.
T. Rahman, M. Sato, I. Ryu, Synlett 2008, 151; e) R. L. Hartman, K. F.
Jensen, Lab Chip 2009, 9, 2495; f) J. P. McMullen, K. F. Jensen, Annu. Rev.
Anal. Chem. 2010, 3, 19; g) J. Yoshida, H. Kim, A. Nagaki, ChemSusChem
2011, 4, 331; h) C. Wiles, P. Watts, Green Chem. 2012, 14, 38; i) A.
Kirschining, L. Kupracz, J. Hartwig, Chem. Lett. 2012, 41, 562; j) D. T.
McQuade, P. H. Seeberger, J. Org. Chem. 2013, 78, 6384; k) K. S. Elvira,
X. C. i Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905; l)
J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849; m) I.
R. Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519; n) T. Fukuyama,
T. Totoki, I. Ryu, Green Chem. 2014, 16, 2042; o) H. P. L. Gemoets, Y. Su,
M. Shang, V. Hessel, R. Luque, T. Noël, Chem. Soc. Rev. 2016, 45, 83; p)
D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev.
2016, 116, 10276; q) M. B. Plutschack, B. Pieber, K. Gilmore, P. H.
Seeberger, Chem. Rev. 2017, 117, 11796.
The present method was put on synthesis of a key
intermediate for the synthesis of HIV nonnucleoside reverse
transcriptase inhibitor, GW678248, which has recently been
reported by Boone's group.[14] The bromine-lithium exchange
reaction of 3-bromo-5-chlorobenzonitrile and the subsequent
reaction with 5-chloro-2-methoxybenzoyl chloride using a flow
microreactor afforded the desired ketone in 52% yield, which can
be converted to GW678248 according to the literature procedure.
(Figure 4).
In conclusion, we have developed a flow-microreactor
method for selective reactions of carboxylic acid chlorides with
organolithiums which enables straightforward and protecting-
group-free synthesis[17] of functionalized ketones. Extremely fast
1:1 mixing using a micromixer is important for high selectivity.
Successfull application to the synthesis of a key intermediate for
GW678248 demonstrates the power of the method. It is hoped
that the method will make significant contribution to synthesis of
a variety of organic compounds having ketone functionality.
Figure 4. Formal total synthesis of GW678248, HIV
nonnucleoside reverse transcriptase inhibitor.
[11] Some selected recent examples: a) D. Cantillo, M. Baghbanzadeh, C. O.
Kappe, Angew. Chem., Int. Ed. 2012, 51, 10190. b) W. Shu, S. L. Buchwald,
Angew. Chem., Int. Ed. 2012, 51, 5355. c) F. Lévesque, P. H. Seeberger,
Angew. Chem., Int. Ed. 2012, 51, 1706. d) K. C. Basavaraju, S. Sharma, R.
A. Maurya, D. P. Kim, Angew. Chem., Int. Ed. 2013, 52, 6735. e) C.
Brancour, T. Fukuyama, Y. Mukai, T. Skrydstrup, I. Ryu, Org. Lett. 2013,
15, 2794. f) J. D. Nguyen, B. Reiß, C. Dai, C. R. J. Stephenson, Chem.
Commun. 2013, 49, 4352. g) C. Battilocchio, J. M. Hawkins, S. V. Ley, Org.
Lett. 2013, 15, 2278. h) A. S. Kleinke, T. F. Jamison, Org. Lett. 2013, 15,
710. i) K. Asano, Y. Uesugi, J. Yoshida, Org. Lett. 2013, 15, 2398. j) L.
Guetzoyan, N. Nikbin, I. R. Baxendale, S. V. Ley, Chem. Sci. 2013, 4, 764.
k) S. Fuse, Y. Mifune, T. Takahashi, Angew. Chem. Int. Ed. 2014, 53, 851;
l) Z. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 3353; m) A. Nagaki,
Y. Takahashi, J. Yoshida, Chem. Eur. J. 2014, 20, 7931; n) M. Chen, S.
Ichikawa, S. L. Buchwald, Angew. Chem., Int. Ed. 2015, 54, 263; o) S. Fuse,
Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun. 2016, 7, 13491; p) A.
Nagaki, Y. Takahashi, J. Yoshida, Angew. Chem., Int. Ed. 2016, 55, 5327;
q) H. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9, 453; r) G.
Parisi, M. Colella, S. Monticelli, G. Romanazzi, W. Holzer, T. Langer, L.
Degennaro, V. Pace, R. Luisi, J. Am. Chem. Soc., 2017, 139, 13648.
[12] a) A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae, J. Yoshida, J. Am.
Chem. Soc. 2005, 127, 11666; b) A. Nagaki, N. Takabayashi, Y. Tomida, J.
Yoshida, Org. Lett. 2008, 10, 3937; c) J. Yoshida, A. Nagaki, T. Iwasaki, S.
Suga, Chem. Eng. Tech. 2005, 3, 259; d) A. Nagaki, D. Ichinari, J. Yoshida,
Acknowledgements
This work was partially supported by the Grant-in-Aid for Scientific
Research on Innovative Areas 2707 Middle molecular strategy
from MEXT (no. 15H05849), Scientific Research (B) (no.
26288049), Scientific Research (S) (no. 26220804), Scientific
Research (S) (no. 25220913), Scientific Research (C) (no.
17865428), AMED (no. 18061567), the Japan Science and
Technology Agency’s (JST) A-step program (no. 18067420), and
the Ogasawara Foundation for the Promotion of Science &
Engineering
Keywords: flow microreactor • functionalized ketones
[1] a) R. C. Larock, Comprehensive Organic Transformations, VCH, New
York, 1989. (b) J. K. Groves, Chem. Soc. Rev. 1972, 1, 73. (c) D. A. Shirley,
In Organic Reactions, Wiley, New York, 1954, 8, 28.
[2] a) Burkhardt, E. R.; Rieke, R. D. J. Org. Chem. 1985, 50, 416; b) R. K.
Dieter, Tetrahedron 1999, 55, 4177.
[3] G. M. Rubottom, C. Kim, J. Org. Chem. 1983, 48, 1550.
[4] a) F. Sato, M. Inoue, K. Oguro, M. Sato, Tetrahedron Lett. 1979, 20,
4303; b) M. K. Eberle, G. G. Kahle, Tetrahedron Lett. 1980, 21, 2303.
[5] a) S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815; b) J. S.
Prasad, L. S. Liebeskind, Tetrahedron Lett. 1987, 28, 1857; c) M. P. Sibi,
Org. Prep. Proc. Int. 1993, 25, 15; d) J. Singh, N. Satyamurthi, I. S. Aidhen,
J. Prakt. Chem. 2000, 342, 340; (e) V. K. Khlestkin, D. G. Mazhukin, Curr.
Org. Chem. 2003, 7, 967; (f) S. Balasubramaniam, I. S. Aiden, Synthesis
2008, 3707.
[13] a) A. Nagaki, K. Imai, S. Ishiuchi, J. Yoshida, Angew. Chem., Int. Ed.
2015, 54, 1914.
[14] a) R. G. Ferris, R. J. Hazen, G. B. Roberts, M. H. St. Clair, J. H. Chan,
K. R. Romines, G. A. Freeman, J. H. Tidwell, L. T. Schaller, J. R. Cowan, S.
A. Short, K. L. Weaver, D. W. Selleseth, K. R. Moniri, and L. R. Boone,
Antimicrob. Agents Chemother. 2005, 10, 4046; b) K. R. Romines, G. A.
This article is protected by copyright. All rights reserved.