Paper
RSC Advances
desorption, the enantiomeric excess in the residue can reach
Notes and references
7
3
8.1% (S) using c-kit2–Cu(II) as the selector, with the yield of
0.3%. However, S-enantiomer can be hardly enriched through
1 (a) L. Feng, C. Zhao, Y. Xiao, L. Wu, J. Ren and X. Qu, Chem.
Commun., 2012, 48, 6900; (b) L. Feng, B. Xu, J. Ren, C. Zhao
and X. Qu, Chem. Commun., 2012, 48, 9068.
2 Z. Guo and P. J. Sadler, Angew. Chem., Int. Ed., 1999, 38,
1512.
multi-stage operation using DNA without Cu(II)-coordination
due to the poor adsorption capacity at low concentration of
ooxacin in the feed solution (Tables 1, S4 and S5†). It is indi-
cated that amplication of both enantioselectivity and binding
affinity of DNA selector is critical to reduce operational stages to
obtain optically pure enantiomer. Therefore, Cu(II)-coordinated
G-rich DNAs are promising chiral selectors to produce both R-
and S-enantiomer from racemic ooxacin with highly optical
purity. Importantly, aer three repetitious recycling, double-
stranded c-kit2 maintains the adsorption capacity of S-enan-
tiomer (only reduced by 8%) as well as the enantioselectivity
3 C. Wang, G. Jia, J. Zhou, Y. Li, Y. Liu, S. Lu and C. Li, Angew.
Chem., Int. Ed., 2012, 51, 9352.
4 (a) M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset and
E. Peyrin, J. Am. Chem. Soc., 2003, 125, 8672; (b) M. Michaud,
E. Jourdan, C. Ravelet, A. Villet, A. Ravel, C. Grosset and
E. Peyrin, Anal. Chem., 2004, 76, 1015; (c) C. Ravelet,
R. Boulkedid, A. Ravel, C. Grosset, A. Villet, J. Fize and
E. Peyrin, J. Chromatogr., A, 2005, 1076, 62; (d) P.-H. Lin,
S.-J. Tong, S. R. Louis, Y. Chang and W.-Y. Chen, Phys.
Chem. Chem. Phys., 2009, 11, 9744; (e) Y. S. Kim,
C. J. Hyun, I. A. Kim and M. B. Gu, Bioorg. Med. Chem.,
2010, 18, 3467; (f) A. Shoji, M. Kuwahara, H. Ozaki and
H. Sawai, J. Am. Chem. Soc., 2007, 129, 1456.
(2.15), showing high efficiency in regeneration and reusability.
For comparison, several polynucleotides including natural
sh sperm (fs-DNA), calf thymus (ct-DNA), micrococcus lyso-
deikticus (ml-DNA), and synthetic polydG–polydC (GC-DNA),
polyG–polyC (GC-RNA), are also selected to perform the chiral
resolution of ooxacin enantiomers. As a result, adopting ct-,
ml-, and GC-DNA, the a towards S-enantiomer is 1.92, 2.07 and
5 (a) L. L. Shen and A. G. Pernet, Proc. Natl. Acad. Sci. U. S. A.,
1985, 82, 307; (b) L. A. Mitscher, Chem. Rev., 2005, 105,
559.
1.56, respectively, whereas no stereoselectivity is detectable for
either fs-DNA or GC-RNA, indicating that the chiral recognition
is greatly associated with DNA conformation (Fig. S1c†). Inter-
6 (a) I. Hayakawa, S. Atarashi, S. Yokohama, M. Imamura,
K. Sakano and M. Furukawa, Antimicrob. Agents Chemother.,
1986, 29, 163; (b) R. H. Drew and H. A. Gallis,
Pharmacotherapy, 1988, 8, 35.
2
+
estingly, addition of Cu into ct-, ml-, or GC-DNA decreases the
enantioselectivity signicantly since polynucleotides are
susceptible to undergo compaction process in the presence of
13
transition metal ions. For example, the a decreases from 2.07
to 1.26 while the adsorption capacities of both S- and R-ooxacin
exhibit obvious increments (Fig. 2c). Compared to other nucleic
acid molecules, it is conrmed that the specic stereoselective
selector with high enantioselectivity and affinity is constructed
7 (a) K. Guo, A. Pourpak, K. Beetz-Rogers, V. Gokhale, D. Sun
and L. H. Hurley, J. Am. Chem. Soc., 2007, 129, 10220; (b)
K. Guo, V. Gokhale, L. H. Hurley and D. Sun, Nucleic Acids
Res., 2008, 36, 4598; (c) S.-T. Danny Hsu, P. Varnai,
A. Bugaut, A. P. Reszka, S. Neidle and S. Balasubramanian,
J. Am. Chem. Soc., 2009, 131, 13399.
2
+
through unique Cu coordination in the G-rich oligonucleo-
tides for efficient enrichment of either R- or S-enantiomer.
8 (a) W. Li, D. Miyoshi, S.-I. Nakano and N. Sugimoto,
Biochemistry, 2003, 42, 11736; (b) J. Zhang, Y. Fu, L. Zheng,
W. Li, H. Li, Q. Sun, Y. Xiao and F. Geng, Nucleic Acids
Res., 2009, 37, 2471.
Conclusions
The DNA-based selector for discriminating chiral ooxacin with
high enantioselectivity and affinity is constructed through
Cu(II)-coordination with G-rich duplex containing successive
9 (a) I. Sissoeff, J. Grisvard and E. Guille, Prog. Biophys. Mol.
Biol., 1978, 31, 165; (b) V. Andrushchenko, J. H. van de
Sande and H. Wieser, Biopolymers, 2003, 72, 374.
guanines. Furthermore, Cu(II)-coordinated DNAs exhibit 10 (a) E.-J. Lee, J.-A. Yeo, K. Jung, H. J. Hwangbo, G.-J. Lee and
stimuli-responsive recognition towards ooxacin enantiomers,
providing a programmable adsorption and desorption process
for the enantiomeric enrichment of either R- or S-enantiomer.
S. K. Kim, Arch. Biochem. Biophys., 2001, 395, 21; (b)
H. J. Hwangbo, B. H. Yun, J. S. Cha, D. Y. Kwon and
S. K. Kima, Eur. J. Pharm. Sci., 2003, 18, 197.
Using this chiral selector, R- and S-ooxacin can be directly 11 (a) C. Y. Chen, K. Chen, Q. Long, M. H. Ma and F. Ding,
enriched from the racemate, with the enantiomeric excess of
5% (R) and 78% (S) individually by three operational stages.
Compared to other biomacromolecules, Cu(II)-coordinated G-
Spectroscopy, 2009, 23, 103; (b) C. Y. Chen, Q. Z. Chen,
X. F. Wang, M. S. Liu and Y. F. Chen, Transition Met.
Chem., 2009, 34, 757.
8
rich DNAs are promising selectors for the enantioseparation of 12 (a) J. Haginaka, J. Chromatogr., A, 2000, 875, 235; (b) X. Zhu,
chiral ooxacin.
Y. Ding, B. Lin, A. Jakob and B. Koppenhoefer,
Electrophoresis, 1999, 20, 1869; (c) Y. Fu, T. Huang,
B. Chen, J. Shen, X. Duan, J. Zhang and W. Li, Sep. Purif.
Technol., 2013, 107, 11; (d) W. Li, Y. Li, Y. Fu and J. Zhang,
Korean J. Chem. Eng., 2013, 30, 1448.
Acknowledgements
This work was supported by NSFC (20836005, 21076141,
2
1206107), and the Special Funds for Major State Basic 13 J. C. Sitko, E. M. Mateescu and H. G. Hansma, Biophys. J.,
Research Program of China (2012CB720300).
2003, 84, 419.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 1329–1333 | 1333