The Journal of Organic Chemistry
NOTE
4a:15a 1H NMR δ 0.79À0.84 (m, 6H), 1.15À1.25 (m, 8H),
1.51À1.59 (m, 4H) 2.22 (t, J = 7.6 Hz, 2H) 3.99 (t, J = 6.6 Hz, 3H);
13C NMR δ 174.0 (C), 64.4 (CH2), 34.4 (CH2), 31.4 (CH2), 31.3
(CH2), 28.6 (CH2), 25.6 (CH2), 24.7 (CH2), 22.5 (CH2), 22.3 (CH2),
14.0 (CH3), 13.9 (CH3).
(5) Simon, E. S.; Young, M.; Chan, A.; Bao, Z.-Q.; Andrews, P. C.
Anal. Biochem. 2008, 377, 234 and references cited therein.
(6) Kusdiana, D.; Saka, S. Appl. Biochem. Biotechnol. 2004,
113À116, 781.
(7) (a) Danishefsky, S.; Hirama, M.; Gombatz, K.; Harayama, T.;
Berman, E.; Schuda, P J. Am. Chem. Soc. 1978, 100, 6536. (b) Otera, J.
Chem. Rev. 1993, 93, 1449 and references cited therein.
6a:20i 1H NMR δ 1.21À1.25 (m, 12H), 1.45À1.56 (m, 4H), 2.23 (t,
J = 7.6 Hz, 2H), 3.56 (t, J = 6.6 Hz, 2H), 3.56 (s, 3H); 13C NMR δ 174.3
(C), 62.9 (CH2), 51.4 (CH3), 34.0 (CH2), 32.7 (CH2), 29.3 (CH2),
29.3 (CH2), 29.1 (CH2), 29.0 (CH2), 25.6 (CH2), 24.9 (CH2).
6b:20k 1H NMR δ 1.30À1.33 (m, 6H), 1.54À1.64 (m, 4H), 2.30 (t,
J = 6.9 Hz, 2H), 3.62 (t, J = 6.6 Hz, 2H), 3.66 (s, 3H); 13C NMR δ 174.4
(C), 62.9 (CH2), 51.5 (CH3), 34.1 (CH2), 32.7 (CH2), 29.1 (CH2),
29.0 (CH2), 25.6 (CH2), 24.9 (CH2).
(8) (a) Seyferth, D.; Dow, A. W.; Menzel, H.; Flood, T. C. J. Am.
Chem. Soc. 1968, 90, 1080. (b) Hashimoto, N.; Aoyama, T.; Shioiri, T.
Chem. Pharm. Bull. 1981, 29, 1475. (c) Hirai, Y.; Aida, T.; Inoue, S. J. Am.
Chem. Soc. 1989, 111, 3062.
(9) (a) Ishihara, K.; Ohara, S.; Yamamoto, H. Science 2000,
290, 1140. (b) Mineno, T.; Kansui, H. Chem. Pharm. Bull. 2006,
54, 918. (c) Shinada, T.; Hamada, M.; Miyoshi, K.; Higashino, M.;
Umezawa, T.; Ohfune, Y. Synlett 2010, 2141.
(10) (a) Reddy, K. R.;Venkateshwar, M.;Maheswari, C. U.;Prashanthi,
S. Synth. Commun. 2010, 40, 186. (b) Foot, J. S.; Kanno, H.; Giblin, G. M. P.;
Taylor, R. J. K. Synthesis 2003, 1055 and references cited therein.
(11) (a) Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.; Yoshida, Z.
J. Org. Chem. 1983, 48, 1286. (b) Murahashi, S. Ài.; Naota, T.; Ito, K.;
Maeda, Y.; Taki, H. J. Org. Chem. 1987, 52, 4319 and references cited therein.
(12) Recently, heterogeneous Au/TiO2 and Au/β-Ga2O3-catalyzed
methyl esterifications of alcohols and methanol have been reported; see:
(a) Nielsen, I. S.; Taarning, E.; Egeblad, K.; Madsen, R.; Christensen,
C. H. Catal. Lett. 2007, 116, 35. (b) Su, F.-Z.; Ni, J.; Sun, H.; Cao, Y.; He,
H.-Y.; Fan, K.-N. Chem.—Eur. J. 2008, 14, 7131.
(13) For selected reviews, see: (a) Hanasaka, F.; Fujita, K.; Yamaguchi,
R. Organometallics 2004, 23, 1490. (b) Guillena, G.; Ramon, D. J.; Yus, M.
Angew. Chem.,Int. Ed. 2007, 46, 2358. (c) Nixon, T. D.; Whittlesey, M. K.;
Williams, J. M. J. Dalton Trans. 2009, 753. (d) Bower, J. F.; Kim, I. S.;
Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34. (e) Guillena,
G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. (f) Debereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(14) For a review, see: Obora, Y.; Ishii, Y. Synlett 2011, 30 and
references cited therein.
(15) (a) Izumi, A.; Obora, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett.
2006, 47, 9199. (b) Yamamoto, N.; Obora, Y.; Ishii, Y. Chem. Lett. 2009,
38, 1106.
(16) (a) Suzuki, T.; Matsuo, T.; Watanabe, K.; Katoh, T. Synlett
2005, 1453. (b) Suzuki, T.; Yamada, T.; Matsuo, T.; Watanabe, K.;
Katoh, T. Synlett 2005, 1450. (c) Zhang, J.; Leitus, G.; Ben-David, Y.;
Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840.
(17) (a) Owston, N. A.; Nixon, T. D.; Parker, A. J.; Whittlesey, M. J.;
Williams, J. M. J. Synthesis 2009, 1578. (b) Owston, N. A.; Parker, A. J.;
Williams, J. M. J. Chem. Commun. 2008, 624.
6c:20l 1H NMR δ 1.30À1.33 (m, 8H), 1.54À1.62 (m, 4H), 1.90 (s,
1H) 2.31 (t, J = 7.6 Hz, 2H), 3.62 (t, J = 6.6 Hz, 2H), 3.67 (s, 3H); 13C
NMR δ 174.4 (C), 62.9 (CH2), 51.5 (CH3), 34.1 (CH2), 32.7 (CH2),
29.4 (CH2), 29.2 (CH2), 29.1 (CH2), 25.7 (CH2), 24.9 (CH2).
6d:20m 1H NMR δ 1.27À1.32 (m, 12H), 1.55À1.63 (m, 4H), 2.30 (t,
J = 7.6 Hz, 2H), 3.64 (t, J = 6.6 Hz, 4H), 3.67 (s, 3H); 13C NMR δ 174.4
(C), 63.1 (CH2), 51.5 (CH3), 34.1 (CH2), 32.8 (CH2), 29.59 (CH2),
29.56 (CH2), 29.5 (CH2), 29.4 (CH2), 29.24 (CH2), 29.15 (CH2), 25.7
(CH2), 25.0 (CH2).
7a:20j 1H NMR δ 1.21À1.26 (m, 8H), 1.52À1.56 (m, 4H), 2.23 (t, J =
7.3 Hz, 4H), 3.56 (s, 6H); 13C NMR δ 174.2 (C), 51.4 (CH3), 34.0
(CH2), 29.0(CH2), 28.9 (CH2), 24.8 (CH2).
7b:20b 1H NMR δ 1.32À1.34 (m, 4H), 1.61À1.63 (m, 4H), 2.30 (t,
J = 7.3 Hz, 4H), 3.67 (s, 6H); 13C NMR δ 174.2 (C), 51.5 (CH3), 34.0
(CH2), 28.8 (CH2), 24.8 (CH2).
7c:20j 1H NMR δ 1.30À1.35 (m, 6H), 1.60À1.63 (m, 4H), 2.30 (t, J =
7.3 Hz, 4H), 3.67 (s, 6H); 13C NMR δ 174.2 (C), 51.5 (CH3), 34.1
(CH2), 28.9 (CH2), 28.9 (CH2), 24.9 (CH2).
7d:20a 1H NMR δ 1.27À1.33 (m, 12H), 1.58À1.62 (m, 4H), 2.30 (t,
J = 7.6 Hz, 4H), 3.67 (s, 6H); 13C NMR δ 174.3 (C), 51.5 (CH3), 34.1
(CH2), 29.4 (CH2), 29.2 (CH2), 29.1 (CH2), 25.0 (CH2).
’ ASSOCIATED CONTENT
Supporting Information. Copies of 1H and 13C NMR of
S
b
the products. This material is available free of charge via the
’ AUTHOR INFORMATION
(18) When Cs2CO3, K3PO4, and KOH were used as base, we could
perform the reaction in homogeneous solution. Therefore, we concluded
the differences between the bases is not a result of different solubilities.
(19) Morita, K.; Nishiyama, Y.; Ishii, Y. Organometallics 1993, 12, 3748.
(20) (a) Hiegel, G. A.; Gilley, C. B. Synth. Commun. 2003, 33, 2003.
(b) Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett.
2003, 44, 9205. (c) Rodriguez, J. C.; Foster, D. F.; Eastham, G. R.; Cole-
Hamilton, D. J. Chem. Commun. 2004, 1720. (d) Rekha, V. V.; Ramani,
M. V.; Ratnamala, A.; Rupakalpana, V.; Subbaraju, G. V.; Satyanarayana,
C.; Rao, C. S. Org. Process Res. Dev. 2009, 13, 769. (e) Chavan, S. P.;
Ethiraj, K. S. Tetrahedron Lett. 1995, 36, 2281. (f) Hamed, O.; El-Qisairi,
A.; Henry, P. M. J. Org. Chem. 2001, 66, 180. (g) Yu, M.; Wen, W.; Wang,
Z. Synth. Commun. 2006, 36, 2851. (h) Vieira, T. O.; Green, M. J.; Alper,
H. Org. Lett. 2006, 8, 6143. (i) He, D.-H.; Wakasa, N.; Fuchikami, T.
Tetrahedron Lett. 1995, 36, 1059. (j) Zimmermann, F.; Meux, E.;
Mieloszynski, J.-L.; Lecuire, J.-M.; Oget, N. Tetrahedron Lett. 2005,
46, 3201. (k) Terent’ev, A. O.; Chodykin, S. V. Cent. Eur. J. Chem. 2005,
3, 417. (l) Lin, D.; Zhang, J.; Sayre, L. M. J. Org. Chem. 2007, 72, 9471.
(m) Khan, A. T.; Mondal, E.; Borah, B. M.; Ghosh, S. Eur. J. Org. Chem.
2003, 21, 4113.
Corresponding Author
*E-mail:(Y.O.) obora@kansai-u.ac.jp; (Y.I.) r091001@kansai-u.ac.jp.
’ ACKNOWLEDGMENT
This work was supported by a Grant-in-Aid for Scientific
Research, “High-Tech Research Center” Project for Private
Universities (2005À2009), and the Strategic Project to Support
the Formation of Research Bases at Private Universities
(2009À2014): matching fund subsidy from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
’ REFERENCES
(1) Otera, J. Esterification; Wiley-VCH: Weinheim, 2003, and references
cited therein.
(2) Grabber, J. H.; Hatfield, R. D. J. Agric. Food Chem. 2005, 53, 1546
and references cited therein.
(3) Pozgan, F.; Lukman, K.; Kocevar, M. Heterocycles 2010, 82, 543
and references cited therein.
(4) Miyano, M. J. Org. Chem. 1970, 35, 2314 and references cited therein.
2941
dx.doi.org/10.1021/jo2003264 |J. Org. Chem. 2011, 76, 2937–2941