C O M M U N I C A T I O N S
Table 2. Competitive and Noncompetitive Benzylation of Toluene
and Benzene with Substituted Benzyl Alcohol 4-RC6H4-CH2OH
The FCA reactivity of 1 and 1-SnCl4 has been extended to
various arenes, heteroarenes, and π-activated 1°/2°/3° alcohols
(Supporting Information, Table S5). The distinct superiority of
“IrIII-SnIV” catalysts over homogeneous FCA catalysts is ascer-
tained by lower catalyst loading, reduced reaction time, low alcohol:
arene ratio, high conversion, and absence of byproduct(s). Spec-
troscopic and kinetic studies in line with the works of Olah,
Shibasaki, and others are in progress to understand the role of the
two cooperative metals.13
Competitive
Noncompetitive
kT
×
(s-
104
kB
×
(s-
104
1
1
entry
R
kT/kB
o:m:p
)
)
kT/kB
kR/kH
σp+
1
2
3
H
6.0 37:5:58
Me 16.8 33:0:67
Cl 5.6 51:0:49
21.1
86.1
7.4
3.2
4.2
1.6
6.6
1
0
20.5 1.3 -0.17
4.6 0.5 0.23
To our knowledge, this represents the first example of a
cooperative FCA catalysis concept in heterobimetallic regime.
Studies are underway to exploit the general applicability of the said
concept and extend it further to enantioselective FCA.
Scheme 1 a
Acknowledgment. S.R. dedicates this work to Prof. R. J.
Puddephatt, FRS. We thank CSIR, DST, and UGC for financial
support, Professors S. Chandrasekaran, S. Sengupta for stimulating
discussion, and Professors A. Basak, M. Bhattacharjee for help.
a (a) 2 equiv of SnCl4, CH2Cl2-C6H6, RT; (b) 2 equiv of SnCl4, ArH,
90 °C; (c) 4 equiv of SnCl4, ArH, 90 °C.
Supporting Information Available: Experimental procedures,
spectral and analytical data, tables, and figures. This material is available
An obvious question at this stage is which other “Tm-Sn” motif
can show promising FCA activity. Catalyst screening with a dual-
catalyst combination of SnCl4 (4 mol %) and a Tm partner (1 mol
%) shows that CoCl(PPh3)3, RuCl2(PPh3)3, and NiCl2(PPh3)2 are
inactive, while PdCl2(PPh3)2 and PtCl2(PPh3)2 are very weakly
active (up to 5% FCA product). Promising activity is shown by
RhCl(PPh3)3 and RhCl(CO)(PPh3)2, but TOFs are much lower
compared to those in “Ir-Sn” catalysts discussed earlier (Supporting
Information, Table S2).
References
(1) (a) Olah, G. A. Friedel-Crafts and Related Reactions; Wiley-Inter-
science: New York, 1964; Vol. II, Part 1. (b) Olah, G. A. A Life of Magic
Chemistry. Autobiographical Reflections of a Nobel Prize Winner; Wiley-
Interscience: New York, 2001. (c) Roberts, R. M.; Khalaf, A. A. Friedel-
Crafts Alkylation Chemistry. A Century of DiscoVery; Marcel Dekker:
New York, 1984. (d) Olah, G. A. J. Org. Chem. 2001, 66, 5943. (e)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004,
43, 550.
(2) (a) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH:
Weinheim, Germany, 2000; Vols. 1 and 2. (b) Corma, A.; Garc´ıa, H.
Chem. ReV. 2003, 103, 4307. (c) Nishibayashi, Y.; Yamanashi, M.; Takagi,
Y.; Hidai, M. Chem. Commun. 1997, 859. (d) Malkov, A. V.; Spoor, P.;
Vinader, V.; Kocˇovsky´, P. J. Org. Chem. 1999, 64, 5308 and references
therein. (e) Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764.
(3) For FC acylation with Pt(II) complexes, see: Fu¨rstner, A.; Voigtla¨nder,
D.; Schrader, W.; Giebel, D.; Reetz, M. T. Org. Lett. 2001, 3, 417.
(4) (a) Sinha, P.; Roy, S. Organometallics 2004, 23, 67. (b) Banerjee, M.;
Roy, S. Org. Lett. 2004, 6, 2137. (c) Banerjee, M.; Roy, S. Chem.
Commun. 2003, 534. (d) Sinha, P.; Roy, S. Chem. Commun. 2001, 1798.
(e) Kundu, A.; Roy, S. Organometallics 2000, 19, 105. (f) Kundu, A.;
Prabhakar, M.; Vairamani, M.; Roy, S. Organometallics 1999, 18, 2782.
(5) (a) Shibasaki, M. In Stimulating Concepts in Chemistry; Vo¨gtle, F.,
Stoddart, J. F., Shibasaki, M., Eds.; Wiley-VCH: Weinheim, Germany,
2000; pp 105-121. (b) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002,
102, 2187. (c) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998,
54, 12985. (d) Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
Soc. 2003, 125, 16178. (e) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J.
Am. Chem. Soc. 2004, 126, 9928.
(6) (a) Olah, G. A.; Kobayashi, S.; Tashiro, M. J. Am. Chem. Soc. 1972, 94,
7448. (b) IrCl3‚xH2O may be placed in moderately active group; see ref
7 and Supporting Information Table S2.
(7) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem.,
Int. Ed. 2005, 44, 238.
(8) (a) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. J. Org. Chem.
1997, 62, 6997. (b) Yamato, T.; Hideshima, C.; Prakash, G. K. S.; Olah,
G. A. J. Org. Chem. 1991, 56, 2089. (c) Deshpande, A. B.; Bajpai, A. R.;
Samant, S. D. Appl. Catal. A 2001, 209, 229.
(9) (a) Klei, S. R.; Golden, J. T.; Burger, P.; Bergman, R. G. J. Mol. Catal.
A 2002, 189, 79. (b) Janka, M.; He, W.; Frontier, A. J.; Eisenberg, R. J.
Am. Chem. Soc. 2004, 126, 6864. (c) Fujita, K.; Fujii, T.; Yamaguchi, R.
Org. Lett. 2004, 6, 3525.
In the context of the present investigation, it must be emphasized
that although the organic reactivity of catalytic Ir(I) complexes is
so well established, that of catalytic Ir(III) is only beginning to
emerge.9,10 The latter includes LA-type catalysis, catalytic C-H
activation, and cycles involving Ir(III)/Ir(I) or Ir(III)/Ir(IV). Interest-
ingly, for olefin arylation, Periana showed a non-FC C-H activation
pathway.10 In view of the above, we felt it appropriate to carry out
preliminary kinetic studies to evaluate whether the present reaction
follows FCA pattern.6a The data for competitive and noncompetitive
benzylation reactions of toluene and benzene with para-substituted
benzyl alcohols using in situ generated 1-SnCl4 as catalyst at 90
°C indeed show familiar FCA behavior (Table 2, and Supporting
Information, Tables S3 and S4). The noteworthy points are (1) that
the reactions give predominantly ortho-para-substitution, (2) that
kT/kB ratios are similar in competitive and noncompetitive runs,
(3) that competitive kT/kB ratio and isomer distribution are
independent of time within a span of 1-20 min, (4) that electron
donating Me substituent in the benzyl alcohol increases the kT/kB
ratio but lowers the ortho/para ratio,6a and (5) that the log(kR/kH)
+
values linearly correlate with Hammett σp constants.
The apparent type-II catalyst was isolated as a benzene adduct
(1-SnCl4‚PhH). The isolated adduct is highly moisture sensitive,
soluble in benzyl alcohol, behaves as a 1:1 electrolyte in solution,
and shows excellent FCA reactivity in the present benzylation
reaction. From elemental analyses, conductivity measurement, FT-
IR, Raman, TGA, NMR studies of the adduct, we conclude that
the type-II catalyst (1-SnCl4) is [Ir(COD)(SnCl3)Cl(SnCl4)-
(arene)]+Cl- (Scheme 1 and Supporting Information).11 This
suggestion is further supported by an early work of Meyer on the
existence of an “Ir-SnCl4” donor-adduct isomer in [Ir(SnCl4)Cl-
(CO)(PPh3)2].12 Attempts to grow crystals of 1-SnCl4‚ArH for
structure determination are underway.
(10) (a) Periana, R. A.; Bhalla, G.; Tenn, W. J., III; Young, K. J. H.; Liu, X.
Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R. J. Mol. Catal. A 2004,
220, 7. (b) Matsumoto, T.; Taube, D. J.; Periana, R. A.; Taube, H.;
Yoshida, H. J. Am. Chem. Soc. 2000, 122, 7414.
(11) For η6-arene complexes of Ir(III), see: (a) Torres, F.; Sola, E.; Mart´ın,
M.; Lo´pez, J. A.; Lahoz, F. J.; Oro, L. A. J. Am. Chem. Soc. 1999, 121,
10632. (b) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. Soc., Dalton
Trans. 1977, 1654. (c) Grundy, S. L.; Maitlis, P. M. J. Organomet. Chem.
1984, 272, 265.
(12) Dammann, C. B.; Hughey, J. L., IV; Jicha, D. C.; Meyer, T. J.; Rakita, P.
E.; Weaver, T. R. Inorg. Chem. 1973, 12, 2206.
(13) See Supporting Information for preliminary results.
JA0506004
9
J. AM. CHEM. SOC. VOL. 127, NO. 17, 2005 6163