RSC Advances
Paper
MoO3–FePO4 catalyst in this reaction is its higher hydrothermal
and water stability as compared to other mesoporous catalysts;
in addition, in situ generated FeMoP Keggin species are very
difficult to remove from the crystalline framework of iron
phosphate.11
Reusability is one of the main advantages of heterogeneous
catalysts. To test the reusability of Mo deposited FeP catalysts,
the benzylation of benzene with benzyl chloride reaction was
carried out using 5Mo–FeP catalyst at 80 ꢀC. The conversion
levels of the benzyl chloride of this catalyst for ve consecutive
cycles were determined. The fresh catalyst offered 100%
conversion at a reaction time of 45 min correspondingly; the
rst and second reused catalysts presented exactly the same
activity. A slight decrease of conversion (96%) was observed in
the third, fourth and h cycles. This could be due to the loss of
catalyst amount during the reaction recycling. These results
5 I. V. Kozhevnikov, Chem. Rev., 1998, 98, 171–198.
6 N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199–218.
7 J. Zhang, Z. Zhu, C. Li, L. Wen and E. Min, J. Mol. Catal. A:
Chem., 2003, 198, 359–367; J. Kaur, K. Griffin, B. Harrison
and V. Kozhevnicov, J. Catal., 2002, 208, 448–455;
G. D. Yadav, N. S. Asthana and V. S. Kamble, J. Catal.,
2003, 217, 88–99; B. M. Devassy, S. B. Halligudi,
S. G. Hegde, A. B. Halageri and F. Lefebvre, Chem.
Commun., 2002, 1074–1075; S. Sarish, B. M. Devassy and
S. B. Halligudi, J. Mol. Catal. A: Chem., 2005, 235, 44–51;
B. M. Devassy, G. V. Shanbhag, F. Lefebvre and
S. B. Halligudi, J. Mol. Catal. A: Chem., 2004, 210, 125–134.
8 G. Kamalakar, K. Komura, Y. Kubota and Y. Sugi, J. Chem.
Technol. Biotechnol., 2006, 81, 981–988.
9 A. S. Tipnis, D. K. Deodhar and S. D. Samant, Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem., 2010, 49, 340–345.
indicate that the catalyst could be reused and good activity can 10 M. Misono, J. Chem. Soc., Chem. Commun., 2001, 1141–1152.
be maintained ever aer ve cycle. Such catalytic performance 11 C.
Srilakshmi,
K.
Narasimharao,
N.
Lingaiah,
is of great importance for potential industrial application.
I. Suryanarayana and P. S. Sai Prasad, Catal. Lett., 2002, 83,
127–132.
12 D. Yu, J. Qian, N. Xue, D. Zhang, C. Wang, X. Guo, W. Ding
4 Conclusions
and Y. Chen, Langmuir, 2007, 23, 382–386.
Nano sized MoOx–FeP composites with different Mo molar 13 X. Wang, Y. Wang, Q. Tang, Q. Guo, Q. Zhang and H. Wan, J.
loadings (1–5%) have been synthesized and used as catalysts for Catal., 2003, 217, 457–467.
the benzylation of benzene using benzyl chloride. Raman and 14 P. Nagaraju, C. Srilakshmi, N. Pasha, N. Lingaiah,
UV-vis spectroscopic results revealed the formation of a Keggin-
like surface structure from the reaction of MoOx with exposed
I. Suryanarayana and P. S. S. Prasad, Appl. Catal., A, 2008,
334, 10–19.
PO4 groups from FeP. H2-TPR and acidity measurements indi- 15 C. Rocchiccioli-Deltcheff, R. Thouvenot and R. Frank,
cated that the 5 mol% Mo impregnated FeP catalyst possesses Spectrochim. Acta, Part A, 1976, 32, 587–597.
more acidic and easily reducible Keggin type species as opposed 16 D. H. Yu, J. S. Qian, N. H. Xue, D. Y. Zhang, C. Y. Wang,
to the porous nanosized FeP support and other MoOx impreg-
nated samples. All Mo–FeP catalysts showed high activity in the
X. F. Guo, W. P. Ding and Y. Chen, Langmuir, 2006, 23,
382–386.
benzylation of benzene with benzyl chloride, with the highest 17 M. Roy, H. Ponceblanc and J. C. Volta, Top. Catal., 2000, 11–
activity observed for 5 mol% of Mo sample. These catalysts are
12, 101–109.
resistant to leaching, are readily recovered and can be recycled 18 A. Cotton, E. G. Wilkinson, C. A. Murillo and M. Bochmann,
without major activity loss.
Advanced Inorganic Chemistry, Wiley-Interscience, New York,
6th edn, 1999.
19 K. Narasimharao, A. Sridhar, A. F. Lee, S. J. Tavener,
N. A. Young and K. Wilson, Green Chem., 2006, 8, 790–797.
Acknowledgements
The authors gratefully thank King Abdulaziz City for Science 20 G. O. Alptekin, A. M. Herring, T. R. Ohno, D. L. Williamson
and Technology (KACST) for the nancial support provided and R. L. McCormick, J. Catal., 1999, 181, 104–112.
through grant no. PS-35-379. The surface chemistry and cata- 21 Y. Wang and K. Otsuka, J. Catal., 1996, 161, 198–205.
lytic studies group at King Abdulaziz University is also 22 J. Moulder, W. Stickle, P. Sobol and K. Bomben, Handbook of
acknowledged for the analytical facilities offered and the
scientic discussion carried out by the research group.
X-ray Photoelectron Spectroscopy, Perkin–Elmer, 1992.
23 M. Zhang, L.-F. Jiao, H.-T. Yuan, Y.-M. Wang, J. Guo,
M. Zhao, W. Wang and X.-D. Zhou, Solid State Ionics, 2006,
177, 3309–3314.
24 S. Damyanova, M. L. Cubeiro and J. L. G. Fierro, J. Mol. Catal.
A: Chem., 1999, 142, 85–100.
References
1 G. A. Olah, R. Krishnamurti and G. K. S. Prakash, in
Comprehensive Organic Synthesis, ed. B. M. Trost and I. 25 R. K. Brow, C. M. Arens, X. Yu and E. Day, Phys. Chem.
Fleming, Pergamom press, Oxford, 1991, vol. III, p. 293.
Glasses, 1994, 35, 132–136.
2 R. A. Sheldon, J. Chem. Technol. Biotechnol., 1997, 68, 381– 26 M. Langpape, J. M. M. Millet, U. S. Ozkan and M. Boudeulle,
388. J. Catal., 1999, 181, 80–90.
3 P. H. Gore, in Friedel-Cras and Related Reactions, ed. G. A. 27 G. W. Coulston, E. A. Thompson and N. Herron, J. Catal.,
Olah, Wiley-Interscience, New York, 1964, vol. III. 1996, 163, 122–129.
4 T. T. Ali, K. Narasimharao, N. S. Ahmed, S. Basahel, S. Al- 28 S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and
Thabaiti and M. Mokhtar, Appl. Catal., A, 2014, 486, 19–31.
Porosity, Academic Press, London, 2nd edn, 1982.
63928 | RSC Adv., 2015, 5, 63917–63929
This journal is © The Royal Society of Chemistry 2015