P. A. Albiniak, G. B. Dudley / Tetrahedron Letters 48 (2007) 8097–8100
8099
Mori, Y.; Yamashita, Y.; Kobayashi, S. J. Am. Chem.
Soc. 2004, 126, 9192.
10. Johnson, W. S. Acc. Chem. Res. 1968, 1, 1.
11. Johnson, W. S.; Gravesto, M.; McCarry, B. E. J. Am.
Chem. Soc. 1971, 93, 4332.
9) and the O-methyl!benzyl exchange detailed by
Speranza and co-workers.29 Other labs have reported
similar but less dramatic observations of heteroatom
substitution products under conventional Friedel–Crafts
conditions.30
12. Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189, and
references cited therein.
Based on these results, we conclude that a reactive ben-
zyl electrophile is generated upon mild thermal activa-
tion (ca. 80 °C) of 1. Benzyloxypyridinium triflate 1 is
unique among phenylcarbenium precursors: it is neutral,
pre-activated, stable at room temperature, and can be
stored and handled without special precautions. The
reactive electrophilic species is produced alongside N-
methyl-pyridone (2), which can act as an acid scavenger
(2!5) to moderate the acidity of the reaction.
13. Valentine, J. C.; McDonald, F. E. Synlett 2006, 1816.
14. Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc.
2003, 125, 7822.
15. Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003,
36, 66.
16. Olah, G. A.; Suryaprakash, G. K.; Sommer, J. Science
1979, 206, 13.
17. Olah, G. A.; McIntyre, J. S.; Bastien, I. J.; Tolgyesi, W. S.;
Baker, E. B.; Evans, J. C. J. Am. Chem. Soc. 1964, 86,
1360.
18. Darbeau, R. W.; White, E. H. J. Org. Chem. 2000, 65,
1121.
19. Fagnoni, M.; Albini, A. Acc. Chem. Res. 2005, 38, 713.
20. Milanesi, S.; Fagnoni, M.; Albini, A. J. Org. Chem. 2005,
70, 603.
In summary, 2-benzyloxy-1-methylpyridinium triflate
(1) decomposes upon heating to release a phenylcar-
benium species, as evidenced by its efficient Friedel–Crafts
alkylations of electron-rich arenes.32 These reactions do
not require strong Lewis or protic acids, in contrast to
the classical conditions for Friedel–Crafts reactions,
and can even be conducted in the presence of hetero-
geneous base (MgO). Stable species that produce carbo-
cations under mild, neutral conditions contribute to the
study of reactive intermediates in organic chemistry and
their potential applications in synthesis.
21. Gasper, S. M.; Devadoss, C.; Schuster, G. B. J. Am.
Chem. Soc. 1995, 117, 5206.
22. (a) 2-Benzyloxy-1-methylpyridinium triflate [26189-59-3] is
licensed, manufactured, and distributed non-exclusively by
Sigma–Aldrich Chemical Co., catalog #679674; see:
Dudley, G. B. Compounds and methods of arylmethyl-
ation (benzylation) as protection for alcohol groups. U.S.
Patent Appl. 11/399,300, 2006; (b) ChemFiles 2007, 7, 3.
23. (a) Poon, K. W. C.; Albiniak, P. A.; Dudley, G. B. Org.
Synth. 2007, 84, 295; (b) Poon, K. W. C.; Dudley, G. B. J.
Org. Chem. 2006, 71, 3923; (c) Poon, K. W. C.; House, S.
E.; Dudley, G. B. Synlett 2005, 3142; For the synthesis of
PMB ethers, see: (d) Nwoye, E. O.; Dudley, G. B. Chem.
Commun. 2007, 1436.
24. Zhang, J. J.; Schmidt, R. R. Synlett 2006, 1729.
25. General procedure: An oven-dried vial with magnetic stir-
bar was charged with arene 3 (5–10 mol equiv) and
pyridinium triflate 1 (0.5 mmol, 1 mol equiv). The vial
was heated at 80 °C for 24 h. The reaction mixture was
diluted with 49:1 hexanes/EtOAc (10 mL) and filtered over
a bed of Celite. Solvent and excess arene were removed in
vacuo to yield the diarylmethane product. When neces-
sary, the product was further purified by silica gel
chromatography. All compounds were judged to be
>95% pure by 1H NMR spectroscopy and provided
characterization data in accord with the literature reports.
26. Triflic acid is one of the most acidic monoprotic acids
known and readily protonates sulfuric acid. (a) Howells,
R. D.; McCown, J. D. Chem. Rev. 1965, 77, 69; (b)
Senning, A. Chem. Rev. 1965, 65, 385; (c) Stang, P. J.;
White, M. R. Aldrichim. Acta 1983, 16, 15.
Acknowledgments
This research was supported by the James and Ester
King Biomedical Research Program, Florida Depart-
ment of Health, an award from Research Corporation,
and by the FSU Department of Chemistry and
Biochemistry.
References and notes
1. Creary, X. Chem. Rev. 1991, 91, 1625.
2. Gleave, J. L.; Hughes, E. D.; Ingold, C. K. J. Chem. Soc.
1935, 236.
3. Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1935, 244.
4. Olah, G. A. In Friedel–Crafts and Related Reactions;
Wiley: New York, 1963–1965; Vols. 1–4.
5. Adams, D. R.; Bhatnagar, S. P. Synthesis 1977, 661.
6. Bachmann, W. E.; Ferguson, J. W. J. Am. Chem. Soc.
1934, 56, 2081; Recent example: Jeon, S. J.; Walsh, P. J. J.
Am. Chem. Soc. 2003, 125, 9544.
7. Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577;
Recent examples: (a) Grant, T. N.; West, F. G. J. Am.
Chem. Soc. 2006, 128, 9348; (b) Liang, G.; Gradl, S. N.;
Trauner, D. Org. Lett. 2003, 5, 4931; (c) Larini, P.;
Guarna, A.; Occhiato, E. G. Org. Lett. 2006, 8, 781; (d)
Schwartz, K. D.; White, J. D. Org. Synth. 2006, 83, 49.
8. Ritter, J. J.; Mineri, P. P. J. Am. Chem. Soc. 1948, 70,
4045; Recent examples: (a) Reddy, K. L. Tetrahedron Lett.
2003, 44, 1453; (b) Nair, V.; Rajan, R.; Rath, N. P. Org.
Lett. 2002, 4, 1575.
27. Albert, A.; Phillips, J. N. J. Chem. Soc. 1956, 1294.
1
28. Analytical data: H NMR (300 MHz, CDCl3) d 7.31–7.02
(m, 7H), 6.74–6.57 (m, 3H), 4.45 (s, 2H), 2.93 (s, 3H). 13
C
NMR (75 MHz, CDCl3) d 149.7, 139.0, 129.1, 128.5,
126.8, 126.7, 116.5, 112.3, 56.6, 38.5. For full character-
ization, see: Desmarets, C.; Schneider, R.; Fort, Y. J. Org.
Chem. 2002, 67, 3029.
29. By exploiting the nuclear decay of tri-tritiated toluene
3
(PhC(3H)3; 3H! He+ + eꢀ), Speranza and coworkers
showed that under certain conditions the major product
of the reaction between 2,6-dimethylanisole and phenyl-
3
carbenium-t2 ðPhCð HÞ2þÞ was benzyl 2,6-dimethylphenyl
ether. See: Anglini, G.; Sparapani, C.; Speranza, M. Gazz.
Chim. Ital. 1986, 116, 479.
9. Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1977, 16,
817, Recent examples:; Recent examples: (a) Wadamoto,
M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J. Org.
Chem. 2003, 68, 5593; (b) Kobayashi, J.; Nakamura, M.;
30. (a) Miller, B.; McLaughlin, M. P.; Marhevka, V. C. J.
Org. Chem. 1982, 47, 710; (b) Miller, B.; McLaughlin, M.