Organic Letters
Letter
Synthesis through Borrowing Hydrogen Catalysis. Chem. Rev. 2018,
118, 1410−1459.
Scheme 4. Proposed Reaction Mechanism
(3) Suga, T.; Shimazu, S.; Ukaji, Y. Low-Valent Titanium-Mediated
Radical Conjugate Addition Using Benzyl Alcohols as Benzyl Radical
Sources. Org. Lett. 2018, 20, 5389−5392.
(4) For recent reviews, see: (a) Knappke, C. E. I.; Grupe, S.;
̈
Gartner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A.
Reductive Cross-Coupling Reactions between Two Electrophiles.
Chem. - Eur. J. 2014, 20, 6828−6842. (b) Weix, D. J. Methods and
Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with
Alkyl Electrophiles. Acc. Chem. Res. 2015, 48, 1767−1775. (c) Gu, J.;
Wang, X.; Xue, W.; Gong, H. Nickel-catalyzed reductive coupling of
alkyl halides with other electrophiles: concept and mechanistic
considerations. Org. Chem. Front. 2015, 2, 1411−1421. (d) Kaga, A.;
Chiba, S. Engaging Radicals in Transition Metal-Catalyzed Cross-
Coupling with Alkyl Electrophiles: Recent Advances. ACS Catal.
2017, 7, 4697−4706.
(5) For mechanistic studies, see: (a) Biswas, S.; Weix, D. J.
Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile
Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc. 2013,
135, 16192−16197. (b) Gutierrez, O.; Tellis, J. C.; Primer, D. N.;
Molander, G. A.; Kozlowski, M. C. Nickel-Catalyzed Cross-Coupling
of Photoredox-Generated Radicals: Uncovering a General Manifold
for Stereoconvergence in Nickel-Catalyzed Cross-Couplings. J. Am.
Chem. Soc. 2015, 137, 4896−4899. (c) Wang, X.; Ma, G.; Peng, Y.;
Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. Ni-Catalyzed
Reductive Coupling of Electron-Rich Aryl Iodides with Tertiary Alkyl
Halides. J. Am. Chem. Soc. 2018, 140, 14490−14497.
catalytic cycle by low-valent titanium-mediated homolytic C−
O bond cleavage.16
In summary, we have established a cross-electrophile
coupling reaction between benzyl alcohols and aryl halides
through titanium-mediated homolytic C−O bond cleavage.
This reaction has broad scope for both coupling fragments, and
no large excesses of substrates are required, except in the cases
of some aryl bromides. Mechanistic studies indicated that the
reaction proceeds via a benzyl radical, as we expected. This
work provides a new use for alcohols in transition-metal
catalysis.
(6) Selected examples are given in refs 6 and 7. (a) Kalyani, D.;
McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. Room-Temperature
C−H Arylation: Merger of Pd-Catalyzed C−H Functionalization and
Visible-Light Photocatalysis. J. Am. Chem. Soc. 2011, 133, 18566−
18569. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Single-
electron transmetalation in organoboron cross-coupling by photo-
redox/nickel dual catalysis. Science 2014, 345, 433−436. (c) Zuo, Z.;
Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D.
W. C. Merging photoredox with nickel catalysis: Coupling of α-
carboxyl sp3-carbons with aryl halides. Science 2014, 345, 437−440.
(d) Tang, S.; Wang, P.; Li, H.; Lei, A. Multimetallic catalysed radical
oxidative C(sp3)−H/C(sp)−H cross-coupling between unactivated
alkanes and terminal alkynes. Nat. Commun. 2016, 7, 11676.
(e) Heitz, D. R.; Tellis, J. C.; Molander, G. A. Photochemical
Nickel-Catalyzed C−H Arylation: Synthetic Scope and Mechanistic
Investigations. J. Am. Chem. Soc. 2016, 138, 12715−12718. (f) Shields,
B. J.; Doyle, A. G. Direct C(sp3)−H Cross Coupling Enabled by
Catalytic Generation of Chlorine Radicals. J. Am. Chem. Soc. 2016,
138, 12719−12722. (g) Zhang, X.; MacMillan, D. W. C. Alcohols as
Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3−sp2
Cross-Coupling of Oxalates with Aryl Halides. J. Am. Chem. Soc. 2016,
138, 13862−13865.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, analytical data for new compounds,
and additional experimental results (PDF)
1H, 13C, and 19F NMR spectral data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
(7) (a) Amatore, M.; Gosmini, C. Direct Method for Carbon-
Carbon Bond Formation: The Functional Group Tolerant Cobalt-
Catalyzed Alkylation of Aryl Halides. Chem. - Eur. J. 2010, 16, 5848−
5852. (b) Everson, D. A.; Shrestha, R.; Weix, D. J. Nickel-Catalyzed
Reductive Cross-Coupling of Aryl Halides with Alkyl Halides. J. Am.
Chem. Soc. 2010, 132, 920−921. (c) Erickson, L. W.; Lucas, E. L.;
Tollefson, E. J.; Jarvo, E. R. Nickel-Catalyzed Cross-Electrophile
Coupling of Alkyl Fluorides: Stereospecific Synthesis of Vinyl-
cyclopropanes. J. Am. Chem. Soc. 2016, 138, 14006−14011.
(d) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.;
Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-
Coupling To Access 1,1-Diarylalkanes. J. Am. Chem. Soc. 2017, 139,
5684−5687. (e) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M.
S.; Doyle, A. G. Nickel-Catalyzed Enantioselective Reductive Cross-
Coupling of Styrenyl Aziridines. J. Am. Chem. Soc. 2017, 139, 5688−
5691. (f) Chen, H.; Jia, X.; Yu, Y.; Qian, Q.; Gong, H. Nickel-
Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic
Carbonates. Angew. Chem., Int. Ed. 2017, 56, 13103−13106. See also
ref 5c.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by a Mitsui Chemicals Award
in Synthetic Organic Chemistry, Japan, a UBE Industries
Foundation Award, and the Kanazawa University SAKIGAKE
project.
REFERENCES
■
(1) Sundararaju, B.; Achard, M.; Bruneau, C. Transition metal
catalyzed nucleophilic allylic substitution: activation of allylic alcohols
via π-allylic species. Chem. Soc. Rev. 2012, 41, 4467−4483.
(2) (a) Kim, S. W.; Zhang, W.; Krische, M. J. Catalytic
Enantioselective Carbonyl Allylation and Propargylation via Alco-
hol-Mediated Hydrogen Transfer: Merging the Chemistry of
Grignard and Sabatier. Acc. Chem. Res. 2017, 50, 2371−2380.
(b) Corma, A.; Navas, J.; Sabater, M. J. Advances in One-Pot
D
Org. Lett. XXXX, XXX, XXX−XXX