catalytic inactivity due to aggregation of the Cu NPs during
the reaction course (entry 9). When the amount of bromobenzene
(1f) was increased to 15 mmol, it also afforded arylation products
in excellent yields (entries 10–12).
T. Mitudome, K. Ebitani, K. Jitsukawa and K. Kaneda,
Chem. Lett., 2009, 1118.
4 (a) B. Yoon and C. M. Wai, J. Am. Chem. Soc., 2005, 127, 17174;
(b) Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485;
(c) T. Mitsudome, K. Nose, K. Mori, T. Mizugaki, K. Ebitani,
K. Jitsukawa and K. Kaneda, Angew. Chem., Int. Ed., 2007,
46, 3288; (d) V. K. Kanuru, S. M. Humphrey, J. M. W. Kyffin,
D. A. Jefferson, J. W. Burton, M. Armbruster and R. M. Lambert,
¨
Dalton Trans., 2009, 7602.
5 J. L. Bolliger, O. Blacque and C. M. Frech, Chem.–Eur. J., 2008,
14, 7969.
6 (a) G. Zhang, H. Zhou, J. Hu, M. Liu and Y. Kuang, Green Chem.,
2009, 11, 1428; (b) J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu,
W. Wu, Y. Chang and G. Zhao, Angew. Chem., Int. Ed., 2004,
43, 1397.
The reusability of the Cu NPs catalyst was examined under
the conditions given in entry 2, Table 1. In the first cycle, the
product 3a was obtained in quantitative yield with complete
conversion of 2a. The resulting reaction mixture containing
Cu NPs catalyst was subjected to reaction for the next
catalytic sequence by adding 1a, 2a and Cs2CO3. The Cu
NPs could be re-used as a catalyst for the coupling reaction at
least three times.
7 (a) Catalysis Without Precious Metals, ed. R. M. Bullock,
Wiley-VCH, Weinheim, Germany, 2010; (b) G. Evano,
N. Blanchard and M. Toumi, Chem. Rev., 2008, 108, 3054;
(c) H. Rao and H. Fu, Synlett, 2011, 745.
However, the yield of 3a deteriorated after repeated use
(51% and 18% after second and third re-uses, respectively).
In conclusion, we have developed Cu NPs with high surface
area for effective utilization of metallic-resources in chemical
transformations. The Cu NPs were firstly prepared by surfactant-
free, DMF reduction methods, the particle size of which (about
2 nm) was estimated by HRTEM as well as DLS spectrum.
These tiny Cu NPs served as an efficient catalyst in the cross-
coupling reaction of aryl halides with phenols under low catalyst
loading and ligand-free conditions.
8 (a) F. Ullmann, Ber. Dtsch. Chem. Ges., 1904, 37, 853;
(b) F. Ullmann and P. Sponagel, Ber. Dtsch. Chem. Ges., 1905,
38, 2211; (c) E. Buck, Z. J. Song, D. Tschaen, P. G. Dormer,
R. P. Volante and P. J. Reider, Org. Lett., 2002, 4, 1623; (d) D. Ma
and Q. Cai, Org. Lett., 2003, 5, 3799; (e) H. J. Cristau, P. P. Cellier,
S. Hamada, J.-F. Spindler and M. Taillefer, Org. Lett., 2004,
6, 913; (f) Y.-J. Chem and H.-H. Chen, Org. Lett., 2006, 8, 5609;
(g) H. Rao, Y. Jin, H. Fu, Y. Jiang and Y. Zhao, Chem.–Eur. J.,
2006, 12, 3636; (h) Q. Cai, B. Zou and D. Ma, Angew. Chem., Int.
Ed., 2006, 45, 1276; (i) R. A. Altman and S. L. Buchwald, Org.
Lett., 2007, 9, 643; (j) B. H. Lipshutz, J. B. Unger and B. R. Taft,
Org. Lett., 2007, 9, 1089; (k) X. Lv and W. Bao, J. Org. Chem.,
2007, 72, 3863; (l) M. Kidwai, N. K. Mishra, V. Bansal, A. Kumar
and S. Mozumdar, Tetrahedron Lett., 2007, 48, 8883; (m) J. Zhang,
Z. Zhang, Y. Wang, X. Zheng and Z. Wang, Eur. J. Org. Chem.,
2008, 5112; (n) F. Monnier and M. Taillefer, Angew. Chem., Int.
Ed., 2009, 48, 6954; (o) A. B. Naidu, A. Jaseer and G. Sekar,
J. Org. Chem., 2009, 74, 3675; (p) J. Y. Kim, J. C. Park, A. Kim,
A. Y. Kim, H. J. Lee, H. Song and K. H. Park, Eur. J. Inorg.
Chem., 2009, 4219; (q) V. Engels, F. Benaskar, N. Patil,
E. V. Rebrov, V. Hessel, L. A. Hulsof, D. A. Jefferson, J. A. J.
M. Vekemans, S. Karwal, J. C. Schouten and A. E. H. Wheatley,
Org. Process. Res. Dev., 2010, 14, 644; (r) F. Benaskar, V. Engels,
N. Patil, E. V. Rebov, J. Meuldijk, V. Hessel, L. A. Hulshof,
D. A. Jefferson, J. C. Schouten and A. E. H. Wheatley, Tetra-
hedron Lett., 2010, 51, 248; (s) H. Yang, C. Xi, Z. Miao and
R. Chen, Eur. J. Org. Chem., 2011, 3353.
9 (a) H. A. Orgueira, D. Fokas, Y. Isome, P. C. M. Chan and
C. M. Baldino, Tetrahedron Lett., 2005, 46, 2911; (b) L. D. Pachon,
J. H. van Maarseveen and G. Rothenberg, Adv. Synth. Catal., 2005,
347, 811; (c) G. Molteni, C. L. Bianchi, G. Marinoni, N. Santo and
A. Ponti, New J. Chem., 2006, 30, 1137; (d) M. L. Kantam, V. S. Jaya,
B. Sreedhar, M. M. Rao and B. M. Choudary, J. Mol. Catal. A:
Chem., 2006, 256, 273; (e) A. Sarkar, T. Mukherjee and S. Kapoor,
J. Phys. Chem. C, 2008, 112, 3334; (f) F. Alonso, Y. Moglie,
G. Radivoy and M. Yus, Tetrahedron Lett., 2009, 50, 2358;
(g) E. A. Karakhanov, A. L. Maximov, Y. S. Kardasheva,
V. A. Skorkin, S. V. Kardashev, V. V. Predeina, M. Y. Talanova,
E. Lurie-Luke, J. A. Seeley and S. L. Cron, Appl. Catal., A, 2010,
385, 62; (h) S. J. Ahmadi, S. Sadjadi, M. Hosseinpour and
M. Abdollahi, Monatsh. Chem., 2011, 142, 801.
This work was supported by the Strategic Project to Support
the Formation of Research Bases at Private Universities,
matching fund subsidy from the Ministry of Education,
Culture, Sports, Science and Technology, Japan. This study
was partially supported by Grants-in-Aid for Scientific
Research (B) (No. 23360361 (to HK), 21310072 (to TY) and
ALCA (to YO) from the Japan Society for the Promotion of
Science (JSPS), the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan, and Japan Science
and Technology Agency (JST).
Notes and references
1 (a) Metal Nonoclusters in Catalysis and Materials Science; The
Issue of Size Control, ed. B. Corain, G. Schmid and N. Toshima,
Elsevier, 2007; (b) Nanoparticles and Catalysis, ed. D. Astruc,
Wiley-VCH, Weinheim, Germany, 2008; (c) Selective Nanocatalysts
and Nanoscience, eds. A. Zecchina, S. Bordiga and E. Groppo,
Wiley-VCH, Weinheim, Germany, 2011.
2 (a) K. Okamoto, R. Akiyama, H. Yoshida, T. Yoshida and
S. Kobayashi, J. Am. Chem. Soc., 2005, 127, 2125;
(b) R. Narayanan and M. A. El-Sayed, Langmuir, 2005,
21, 2027; (c) H. Oyamada, R. Akiyama, H. Hagio, T. Naito and
S. Kobayashi, Chem. Commun., 2006, 4297; (d) Y. Gao,
C.-A. Chen, H.-M. Gau, J. A. Bailey, E. Akhadov, D. Williams
and H.-L. Wang, Chem. Mater., 2008, 20, 2839; (e) R. Xing,
Y. Liu, H. Wu, X. Li, M. He and P. Wu, Chem. Commun., 2008,
6297; (f) G. Wei, W. Zhang, F. Wen, Y. Wang and M. Zhang,
J. Phys. Chem. C, 2008, 112, 10827; (g) I. Pastoriza-Santos and
L. M. Liz-Marza’n, Adv. Funct. Mater., 2009, 19, 1; (h) D. Srimani,
A. Bej and A. Sarkar, J. Org. Chem., 2010, 75, 4296.
3 (a) G. R. Newkome, E. He and C. N. Moorefield, Chem. Rev.,
1999, 99, 1689; (b) E. H. Rahim, F. S. Kamounah, J. Frederiksen
and J. B. Christensen, Nano Lett., 2001, 1, 499; (c) K. Yamamoto,
M. Higuchi, S. Shiki, M. Tsuruta and H. Chiba, Nature, 2002,
415, 509; (d) K. R. Gopidas, J. K. Whitesell and M. Anne Fox,
Nano Lett., 2003, 3, 1757; (e) M. Pittelkow, K. Moth-Poulsen,
U. Boas and J. B. Christensen, Langmuir, 2003, 19, 7682;
(f) C. Ornelas, J. R. Aranzaes, L. Salmon and D. Astruc,
Chem.–Eur. J., 2008, 14, 50; (g) T. Mizugaki, T. Kibata, K. Ota,
10 (a) H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa,
Y. Iwasaki and M. Inada, Langmuir, 2010, 26, 5926;
(b) H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa,
M. Inada and Y. Iwasaki, Chem. Commun., 2010, 46, 3759;
(c) M. Hyotanishi, Y. Isomura, H. Yamamoto, H. Kawasaki and
Y. Obora, Chem. Commun., 2011, 47, 5750.
11 H. Kawasaki, Y. Kosaka, Y. Myoujin, T. Narushima,
T. Yonezawa and R. Arakawa, Chem. Commun., 2011, 47, 7740.
12 J. J. Brege, C. E. Hamilton, C. A. Crouse and A. R. Barron, Nano Lett.,
2009, 6, 2239.
c
3786 Chem. Commun., 2012, 48, 3784–3786
This journal is The Royal Society of Chemistry 2012