Paper
RSC Advances
5
d
According to the reported literature and our experimental
results, the catalytic reaction pathways for the Fe-catalyzed
esterication of amides by alcohols are proposed as shown in
Scheme 4. The rst step is the generation of the amidate
complex A, which can be formed from free Fe(III) and amide 1.
The complex A reacts with alcohol 2 to produce an unstable
intermediate B. The interaction between the alcohol oxygen and
the carbonyl results in cyclic intermediate C, which is in equi-
librium with its isomer D. Intermediate E can also be produced
from D via C–N bond cleavage. Through the reaction of HCl and
a new molecule amide, intermediate E produces the desired
ester 3, ammonium chloride (colorless crystal, which was
detected aer the reaction), and the amidate complex A.
3 For reviews in C–N bond activation, see: (a) K. Ouyang,
W. Hao, W.-X. Zhang and Z. Xi, Chem. Rev., 2015, 115,
12045; (b) Q. Wang, Y. Su, L. Li and H. Huang, Chem. Soc.
Rev., 2016, 45, 1257.
4 For a review about amide reactivity see: (a) M. C. Whisler,
S. MacNeil, V. Snieckus and P. Beak, Angew. Chem., Int. Ed.,
2004, 43, 2206; (b) V. Snieckus, Chem. Rev., 1990, 90, 879;
(c) V. Pace, W. Holzer and B. Olofsson, Adv. Synth. Catal.,
2014, 356, 3697.
5 For transamidation of amides see: (a) T. B. Nguyen, J. Sorres,
M. Q. Tran, L. Ermolenko and A. Al-Mourabit, Org. Lett.,
2012, 14, 3202; (b) N. A. Stephenson, J. Zhu, S. H. Gellman
and S. S. Stahl, J. Am. Chem. Soc., 2009, 131, 10003; (c)
S. N. Rao, D. C. Mohan and S. Adimurthy, Org. Lett., 2013,
1
5, 1496; (d) L. Becerra-Figueroa, A. Ojeda-Porras and
Conclusions
D. Gamba-Sanchez, J. Org. Chem., 2014, 79, 4544; (e) Y. Liu,
S. Shi, M. Achtenhagen, R. Liu and M. Szostak, Org. Lett.,
2
In summary, we have discovered a simple, useful and general
method for the esterication of amides using inexpensive and
readily available iron salts as catalysts. The reaction shows high
substrate tolerance as a wide range of aromatic or aliphatic
primary, secondary and tertiary amides can be effectively used
to produce corresponding esters in good to excellent yields. In
addition to alcohol, esters were also used as substrates for
esterication of amides through the acyl–acyl exchange process.
The present ndings not only provide a general and concise
method for Fe-catalyzed amide C–N bond cleavage, but also
open an avenue for the preparation of esters.
017, 19, 1614; (f) G. Meng, P. Lei and M. Szostak, Org.
Lett., 2017, 19, 2158.
6
7
(a) S. Yamada, Angew. Chem., Int. Ed., 1995, 34, 1113; (b)
S. Yamada, J. Org. Chem., 1996, 61, 941; (c) M. Hutchby,
C. E. Houlden, M. F. Haddow, S. N. G. Tyler, G. C. Loyd-
Jones and K. I. Booker-Milburn, Angew. Chem., Int. Ed.,
2
3
(a) L. M. Berreau, M. M. Makowsak-Grzyska and A. M. Arif,
Inorg. Chem., 2000, 39, 4390; (b) S. Kawaguchi and K. Araki,
Inorg. Chim. Acta, 2005, 358, 947; (c) E. Szajna-Fuller,
G. K. Lngle, R. W. Watkins, A. M. Arif and L. M. Berreau,
Inorg. Chem., 2007, 46, 2353; (d) M. C. Bçhmer and
W. Bannwarth, Eur. J. Org. Chem., 2008, 4412; (e)
M. C. Br ¨o hmer, S. Mundinger, S. Br ¨a se and
W. Bannawarth, Angew. Chem., Int. Ed., 2011, 50, 6175; (f)
M. A. R. Raycro, C. I. Maxwell, R. A. A. Oldham,
A. S. Andrea, A. A. Neverov and R. S. Brown, Inorg. Chem.,
012, 51, 548; (d) J. Aub ´e , Angew. Chem., Int. Ed., 2012, 51,
063.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
Financial support by Natural Science Foundation of China
2
012, 51, 10325; (g) M. Hutchby, C. E. Houlden,
(21603068) and research fund for the doctoral program (2016-
M. F. Haddow, S. N. G. Tyler, G. C. Lloyd-Jones and
K. I. Booker-Milburn, Angew. Chem., Int. Ed., 2012, 51, 548.
(a) S. Yamada, Angew. Chem., Int. Ed., 1993, 32, 1083; (b)
S. Yamada, Angew. Chem., Int. Ed., 1995, 34, 1113; (c)
S. Yamada, J. Org. Chem., 1996, 61, 941; (d) S. Yamada, J.
Org. Chem., 1996, 61, 5932; (e) M. Hutchby, C. E. Houlden,
M. F. Haddow, S. N. G. Tyler, G. C. Loyd-Jones and
K. I. Booker-Milburn, Angew. Chem., Int. Ed., 2012, 51, 548;
(f) S. Yamada, J. Org. Chem., 1992, 57, 1591; (g)
M. Hutchby, C. E. Houlden, M. F. Haddow, S. N. G. Tyler,
G. C. Lloyd-Jones and K. I. Booker-Milburn, Angew. Chem.,
Int. Ed., 2012, 51, 548.
9 (a) Y. Kita, Y. Nishii, T. Higuchi and K. Mashima, Angew.
Chem., Int. Ed., 2012, 51, 5723; (b) Y. Kita, Y. Nishii,
A. Onoue and K. Mashima, Adv. Synth. Catal., 2013, 355,
3391; (c) B. N. Atkinson and J. M. J. Williams, Tetrahedron
Lett., 2014, 55, 6935; (d) Y. Nishii, S. Akiyama, Y. Kita and
K. Mashima, Synlett, 2015, 26, 1831.
19XB011 or KY11066) of Hubei University of Science and
Technology are gratefully appreciated.
8
Notes and references
1
(a) N. Sewald and H. D. Jakubke, Peptides: Chemistry and
Biology, Wiley-VCH: Weinheim, 2002; (b) B. L. Bray, Nat.
Rev. Drug Discovery, 2003, 2, 587; (c) T. Cupido, J. Tulla-
Puche, J. Spengler and F. Albericio, Curr. Opin. Drug
Discovery Dev., 2007, 10, 768; (d) J. W. Bode, Curr. Opin.
Drug Discovery Dev., 2006, 9, 765; (e) J. M. Humphrey and
A. R. Chamberlin, Chem. Rev., 1997, 97, 2243; (f)
A. Greenberg, C. M. Breneman and J. F. Liebman, Amide
Linkage: Selected Structural Aspects in Chemistry,
Biochemistry, and Materials Science, Wiley-Interscience, New
York, 2000.
2
(a) G. W. Wang, T. T. Yuan and D. D. Li, Angew. Chem., Int.
Ed., 2011, 50, 1380; (b) X. X. Zhang, W. T. Teo and 10 S. M. A. H. Siddiki, A. S. Touchy, M. Tamura and K. Shimizu,
P. W. H. Chan, J. Organomet. Chem., 2011, 696, 331; (c)
E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
RSC Adv., 2014, 4, 35803.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 4571–4576 | 4575