10.1002/cctc.201801443
ChemCatChem
COMMUNICATION
[1]
a) M. Aresta, Carbon Dioxide as Chemical Feedstock,
NH2
(a)
(b)
OH
O
CO2
+
+
Wiley-VCH, 2010; b) A. K. Ghosh, M. Brindisi, J. Med. Chem.
2015, 58, 2895-2940; c) H. Wang, Z. Xin, Y. Li, Top. Curr. Chem.
2017, 375, 49.
N
CN
N
CeO2 (0.003 g)
NH2
2-Picolinamide
5 MPa 200 mmol
75 mmol
+
H2O
H
2-propanol (75 mmol)
aniline (200 mmol)
CO2 1 MPa
CeO2 (0.01 g) and/or
2-Cyanopyridine (10 mmol)
N
O
30 mmol
4
5-30 mmol
[2]
K. Weissermel, H.-J. Harpe, Industrial Organic Chemistry,
O
423 K, 0-1h
423 K, 0-0.5 h
4th ed., Wiley-VCH, 2003.
Isopropyl N-phenylcarbamate
0.5
0.4
0.3
0.2
0.1
0
[3]
a) S. Grego, F. Arico, P. Tundo, Org. Process Res. Dev.
2013, 17, 679-683; b) R. Juárez, P. Concepción, A. Corma, V.
Fornés, H. García, Angew. Chem. 2010, 122, 1308-1312; Angew.
Chem. Int. Ed. 2010, 49, 1286-1290; c) S. Laursen, D. Combita,
A. B. Hungría, M. Boronat, A. Corma, Angew. Chem. 2012, 124,
4266-4269; Angew. Chem. Int. Ed. 2012, 51, 4190-4193; d) W.
Guo, J. Gónzalez-Fabra, N. A. G. Bandeira, C. Bo, A. W. Kleij,
Angew. Chem. 2015, 127, 11852-11856; Angew. Chem. Int. Ed.
2015, 54, 11686-11690.
CeO2+2-cyanopyridine
y=0.449x+2.56
(R2>0.99)
V = 76 mmol h-1 g-1
3
CeO2
V = 4.4 mmol h-1 g-1
[4]
R. Juárez, A. Corma, H. García, Top. Catal. 2009, 52,
1688-1695.
2
0
0.5
1
1.5
0
0.5
1
[5]
a) X. Guo, J. Shang, J. Li, L. Wang, Y. Ma, F. Shi, Synth.
Log(Amount of H2O / mmol)
Reaction time / h
Commun. 2011, 41, 1102-1111. b) J. Gao, H. Li, Y. Zhang, Y.
Zhang, Green Chem. 2007, 9, 572-576.
Figure 5. (a) Comparison of reaction rates over CeO2 and CeO2+2-cyanopyridine. (b)
Relationship between the reaction rate and H2O amount.
[6]
W. Xiong, C. Qi, H. He, L. Ouyang, M. Zhang, H. Jiang,
NH2
Angew. Chem. 2015, 127, 3127-3130; Angew. Chem. Int. Ed.
2015, 54, 3084-3087.
CH3OH
CeO2
2-cyanopyridine
+
H
H
H
[7]
D. Riemer, P. Hirapara, S. Das, ChemSusChem 2016, 9,
N
O
NH2
CO2
N
N
1916-1920.
2
2-Cyanopyridine
+ CeO2
O
O
[8]
a) N. Germain, I. Müller, M. Hanauer, R. A. Paciello, R.
DPU
Methyl N-phenylcarbamate
Baumann, O. Trapp, T. Schaub, ChemSusChem 2016, 9, 1586-
1590; b) H.-Y. Yuan, J.-C. Choi, S.-Y. Onozawa, N. Fukaya, S. J.
Choi, H. Yasuda, T. Sakakura, J. CO2 Util. 2016, 16, 282-286; c)
J.-C. Choi, H.-Y. Yuan, N. Fukaya, S.-y. Onozawa, Q. Zhang, S.
j. Choi, H. Yasuda, Chem. Asian J. 2017, 12, 1297-1300.
(MPC)
H2O
CN
O
N
N
NH2
CeO2
2-Cyanopyridine
Picolinamide
[9]
a) N. Germain, M. Hermsen, T. Schaub, O. Trapp, Appl.
Scheme 4. Proposed reaction route of MPC formation from CO2, aniline and methanol using
CeO2 and 2-cyanopyridine.
Organomet. Chem. 2017, 31. b) Q. Zhang, H.-Y. Yuan, N. Fukaya,
H. Yasuda, J.-C. Choi, ChemSusChem 2017, 10, 1501-1508; c)
Q. Zhang, H.-Y. Yuan, N. Fukaya, J.-C. Choi, ACS Sustainable
Chem. Eng. 2018, 6, 6675-6681; d) Q. Zhang, H.-Y. Yuan, N. Fukaya, H.
Yasuda, J.-C. Choi, Green Chem. 2017, 19, 5614-5624.
combination of CeO2 and 2-cyanopyridine. CeO2-catalyzed
hydration of 2-cyanopyrdine effectively proceeded under the
same reaction conditions, which can remove the produced H2O
from the reaction media to shift the equilibrium of DPU formation
to the product side. The MPC formation from DPU and methanol
also plays a role in shifting the equilibrium by decreasing the DPU
amount in the reaction media. In addition, smooth MPC formation
also enabled high selectivity by maintaining the low concentration
of DPU and amidine.
A new one-pot selective synthesis of carbamates from CO2,
amines and alcohols was demonstrated by using the combination
catalyst of CeO2 and 2-cyanopyridine. This method enables
sequential formation of C-N and C-O bonds by the drastic shift of
the reaction equilibrium in N,N’-substituted urea formation and
remarkable catalytic function of CeO2 and 2-cyanopyridine in
exchange-reaction of C-N and C-O bonds, providing various
carbamates including N-arylcarbamates in high selectivities.
[10] a) M. Abla. J.-C. Choi, T. Sakakura, Chem. Commun. 2001, 2238-2239;
b) A. Ion, C. V. Doorslaer, V. Parvulescu, P. Jacobs, D. D. Vos, Green
Chem. 2008, 10, 111-116; c) M. Honda, S. Sonehara, H. Yasuda, Y.
Nakagawa, K. Tomishige, Green Chem. 2011, 13, 3406-3413.
[11] R. H. Heyn, I. Jacobs, R. H. Carr, Adv. Inorg. Chem. 2014, 66, 83-115.
[12] a) M. Honda, M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K.-i.
Fujimoto, K. Tomishige, ChemSusChem 2013, 6, 1341-1344; b) M.
Honda, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, J.
Catal. 2014, 318, 95-107; d) M. Honda, M. Tamura, Y. Nakagawa, K.
Tomishige, Catal. Sci. Technol. 2014, 4, 2830-2845.
[13] M. Honda, M. Tamura, K. Nakao, K. Suzuki, Y. Nakagawa, K. Tomishige,
ACS Catal. 2014, 4, 1893-1896.
[14] M. Tamura, K. Ito, M. Honda, Y. Nakagawa, H. Sugimoto, K. Tomishige,
Sci. Rep. 2016, 6, 24038.
[15] a) A. Bansode, A. Urakawa, ACS Catal. 2014, 4, 3877-3880; b) D. Stoian,
A. Bansode, F. Medina, A. Urakawa, Catal. Today 2017, 283, 2-10.
[16] P. Król, Prog. Mater. Sci. 2007, 52, 915-1015.
[17] R. B. Greenwald, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug
Delivery Rev. 2003, 55, 217-250.
Acknowledgements
This work was supported by JST PRESTO Grant Number
JPMJPR15S5, Japan.
Keywords: carbon dioxide • carbamate • ceria •heterogeneous
catalyst • arylamine
This article is protected by copyright. All rights reserved.