1622
X. ZHANG, H. JING, AND G. ZHANG
Heptyl N-Phenylcarbamate (2 l). Mp 57 ꢀC (lit.[26] 61 ꢀC); 1H NMR
(400 MHz, CDCl3): d 6.60 (brs, 1H), 7.40–7.05 (m, 5H), 4.17 (t, 2H, J ¼ 6.8 Hz),
1.70–1.60 (m, 2H), 1.41–1.31 (m, 8H), 0.90 (t, 3H, J ¼ 6.8 Hz).
Octyl N-Phenylcarbamate (2 m). Mp 72 ꢀC (lit.[27] 74 ꢀC); 1H NMR
(400 MHz, CDCl3): d 6.59 (brs, 1H), 7.40–7.05 (m, 5H), 4.17 (t, 2H, J ¼ 7.0 Hz),
1.71–1.64 (m, 2H), 1.39–1.29 (m, 10H), 0.89 (t, 3H, J ¼ 6.4 Hz).
ACKNOWLEDGMENTS
We sincerely acknowledge the financial supports from the Program for Innova-
tive Research Team in University of Henan Province, China (2008IRTSTHN002)
and the Education Department of Henan Province, China (2009B150013).
REFERENCES
1. Kim, H. S.; Kim, Y. J.; Lee, H.; S.; Lee, D. C.; Chiny, S. Oxidative carbonylation of
aromatic amines by selenium compounds. J. Catal. 1999, 184, 526–534.
2. (a) Gupte, S. P.; Shivarkar, A. B.; Chaudhari, R. V. Carbamate synthesis by solid-base-
catalyzed reaction of disubstituted ureas and carbonates. Chem. Commun. 2001, 2620–
2621; (b) Aresta, M.; Quaranta, E. Carbon dioxide: A substitute for phosgene. Chem.
Tech. 1997, 27, 32–40; (c) Vauthey, I.; Valot, F.; Gozzi, C.; Fache, F.; Lemane, M. An
environmentally benign access to carbamates and ureas. Tetrahedron Lett. 2000, 41,
6347–6350.
3. (a) Wu, T. T.; Huang, J.; Arrington, N.; Dill, G. M. Synthesis and herbicidal activity of
a-heterocyclic carbinol carbamates. J. Agric. Food Chem. 1987, 35, 817–823; (b)
Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Converting
carbon dioxide into carbamate derivatives. Chem. Rev. 2003, 103, 3857–3898.
4. (a) Norwick, J. S.; Powell, N. A.; Nguyen, T. M.; Noronha, G. An improved method for
the synthesis of enantiomerically pure amino acid ester isocyanates. J. Org. Chem. 1992,
57, 7364–7366; (b) Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction
of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas
using CO. Chem. Rev. 1996, 96, 2035–2052.
5. (a) Uchiumi, P. S.; Ataka, K.; Matsuzaki, T. Oxidative reactions by a palladium–alkyl
nitrite system. J. Organomet. Chem. 1999, 576, 279–289; (b) Majer, P.; Randad, R. S.
A safe and efficient method for preparation of N,N0-unsymmetrically disubstituted ureas
utilizing triphosgene. J. Org. Chem. 1994, 59, 1937–1938; (c) Slocombe, R. J.; Hardy, E.;
Saunders, J. H.; Jenkins, R. L. Phosgene derivatives: The preparation of isocyanates,
carbamyl chlorides, and cyanuric acid. J. Am. Chem. Soc. 1950, 72, 1888–1891.
6. (a) Skoog, S. J.; Campbell, J. P.; Gladfelter, W. L. Homogeneous catalytic carbonylation
of nitroaromatics, 9: Kinetics and mechanism of the first N-O bond cleavage and structure
of the g-2-ArNO intermediate. Organometallics 1994, 13, 4137–4139; (b) Macho, V.;
Harustiak, M. New catalytic system for oxidative carbonylation of aniline. J. Mol. Catal.
1994, 91, L155–L159; (c) Aresta, M.; Quaranta, E. Alkali-metal-assisted transfer of the
carbamate group from phosphocarbamates to alkyl halides: A new easy way to
alkali-metal carbamates and to carbamate esters. J. Chem. Soc. Dalton Trans. 1992,
1893–1899.
7. Fukuoka, S.; Chono, M.; Kohno, M. A novel catalytic synthesis of carbamates by the
oxidative alkoxycarbonylation of amines in the presence of platinum group metal and
alkali metal halide or onium halide. J. Org. Chem. 1984, 49, 1458–1460.