I
Mechanism of Reduction of the Nitrite Ion by Cu Complexes
FULL PAPER
Acknowledgments
(
12)
all
This study was supported in part by a grant from the Budgeting
and Planning Committee of The Council of Higher Education. D.
M. wishes to express his thanks to Mrs. Irene Evens for her ongo-
ing interest and support.
ϩ
4
Thus, at pHs considerably lower than the pK
a
of NH
/NH
3
I
ϩ
ϩ
the [Cu (NH
3
[45]
)
2
]
is transformed into Cuaq (The ligand exchange
I
of Cu is fast ).
Kinetic Measurements: Stopped-flow experiments were carried out
using an SX.18 Applied PhotoPhysics stopped-flow instrument
that enables kinetic measurements of reactions with lifetimes Ն 2
msec. A 05Ϫ109 Spectra Kinetics Monochromator, which enables
measurements in the range of 200Ϫ700 nm, was used. The optical
path was 10 mm. All the kinetic runs are the average of at least a
triplicate. The error limit for the rate constants and for the equilib-
ria constants is Ϯ10%.
[
1]
B. A. Averill, Angew. Chem. 1994, 33, 2057.
[2]
[3]
B. A. Averill, Chem. Rev. 1996, 2951.
L. M. Murphy, F. E. Dodd, F. K. Yousafzai, R. R. Eady, S. S.
Hasnain, J. Mol. Biol. 2002, 315, 859.
D. Zhang, W. Verstraete, Environ. Tech. 2001, 22, 905.
G. Gulis, M. Czompolyova, J. R. Cerhan, Environ. Res. 2002,
[
[
4]
5]
8
8, 182.
[
[
[
6]
7]
8]
P. D. Pedersen, K. Jensen, P. Lyngsie, N. H. Johansen, Water
Sci. Tech. 2003, 47, 181.
F. Armijo, E. Trollund, M. Reina, M. C. Arevalo, M. J. Ag-
uirre, Coll. Czechoslovak, Chem. Commun. 2003, 68, 1723.
G. H. Lu, D. W. Long, T. Zhan, H. Y. Zhao, Chinese J. Anal.
Chem. 2002, 30, 1115.
J. M. Rifkind, E. Nagababu, S. Ramasamy, L. B. Ravi, Redox
Report 2003, 8, 234.
R. Andrade, C. O. Viana, S. G. Guadagnin, F. G. R. Reyes, S.
Rath, Food Chem. 2003, 80, 597.
I. K. Choi, Y. Liu, D. W. Feng, K. J. Paeng, M. D. Ryan, Inorg.
Chem. 1991, 30, 1832.
Y. Liu, M. D. Ryan, J. Electroanal. Chem. 1994, 368, 209.
O. Einsle, A. Messerschmidt, R. Huber, P. M. H. Kroneck, F.
Neese, J. Am. Chem. Soc. 2002, 124, 11737.
E. V. Kudrik, S. V. Makarov, A. Zahl, R. Van Eldik, Inorg.
Chem. 2003, 42, 618.
S. H. Cheng, Y. O. Su, Inorg. Chem. 1994, 33, 5847.
M. R. Rhodes, M. H. Barley, T. J. Meyer, Inorg. Chem. 1991,
The time-dependence of the absorbances at 355 nm was observed .
Ϫ
This wavelength is the maximum of the absorption band of NO
2
ϩ
I
ϩ
for the reactions of Cuaq and Cu (CH
3
CN)
n
. Alternatively, the
absorbance of the band at 635 nm, the maximum of the absorption
[9]
II 1 2ϩ
I 1 ϩ
band of (Cu L ) for the reaction of (Cu L ) , was observed.
[10]
Electron Paramagnetic Resonance (EPR) spectra were recorded
using a Bruker EMX-220 digital X-band (ν ϭ 9.4 GHz) spec-
trometer equipped with a Bruker EP 4241VT temperature control
system. All spectra were recorded at room temperature (T ϭ 297 K)
with the following parameters: 20.12 mW nonsaturating microwave
[11]
[
[
12]
13]
power, 100 kHz field modulation of 0.1 mT amplitude. EPR spectra
[14]
TM
were processed using the Bruker WIN-EPR and Microcalc
Ori-
TM
gin
software.
[15]
[16]
I
ϩ
Solutions of (Cu L) , nitrite and PN were mixed producing 4,4,5,5-
tetramethyl-2-(1-pyryl)-2-imidazoline (PPN), which has a com-
pletely different EPR spectrum (Figure 9) from PN (PN reacts only
with NO to produce PPN).
3
0, 629.
[17]
S. Mahapatra, J. A. Halfen, W. B. Tolman, J. Chem. Soc.,
Chem. Commun. 1994, 1625.
[18]
C. E. Ruggiero, S. M. Carrier, W. B. Tolman, Angew. Chem.
1994, 33, 895.
Mass Spectra: The mass spectrometer used in this study was a Balz-
ers Quadrupole model QMG-421 instrument, with an SEM (sec-
ondary electron multiplier) detector.
[
[
19]
20]
P. P. Paul, K. D. Karlin, J. Am. Chem. Soc. 1991, 113, 6331.
F. Chun-Sing, W. Kwok-Yin, J. Electroanal. Chem. 1996, 401,
263.
[
[
[
21]
22]
23]
J. A. Cowan, Inorganic Biochemistry, An Introduction, VCH
Publishers: New York, 1993.
N. Revsbech, B. Sorensen, Denitrification in Soil and Sediment;
Plenum Press: New York, 1990.
B. C. Berks, S. J. Ferguson, J. W. B. Moir, D. J. Richardson,
Biochim. Biophys. Acta-Bioenergetics 1995, 1232, 97.
W. G. Zumft, Microbiol. Biol. Rev. 1997, 61, 533.
I. M. Wasser, S. Vries, P. Moeenne-Loccoz, I. Schroeder, K. D.
Karlin, Chem. Rev. 2002, 102, 1201.
L. Casella, O. Carugo, Inorg. Chem. 1996, 35, 1101.
E. T. Adman, M. E. Murphy, Handbook of Metalloproteins;
Wiley, 2001.
[
[
24]
25]
[
[
26]
27]
[
[
28]
29]
M. Beretta, E. Bouwman, L. Casella, B. Douziech, W. L.
Driessen, L. Gutierrez-Soto, E. Monzani, J. Reedijk, Inorg.
Chim. Acta 2000, 310, 41.
E. Monzani, G. J. A. A. Koolhaas, A. Spandre, E. Leggieri, L.
Casella, M. Gullotti, G. Nardin, L. Randaccio, M. Fontani, P.
Zanello, J. Reedijk, JBIC 2000, 5, 251.
[
[
[
30]
31]
32]
S. Suzki, K. Kataoka, K. Yamaguchi, Acc. Chem. Res. 2000,
3
3, 728.
Figure 9. The EPR spectrum of PPN (bold line), formed by mixing
Ϫ3
I
ϩ
Ϫ2
J. A. Halfen, A. J. Gengenbach, W. B. Tolman, J. Am. Chem.
Soc. 1996, 118, 763.
1
:1 1.0 ϫ 10 [Cu (NH
3
)
2
]
2
with 5.0 ϫ 10 NaNO ; this
Ϫ3
solution was mixed 4:1 with 1.55 ϫ 10 PN. The experiment
J. A. Halfen, W. B. Tolman, J. Am. Chem. Soc. 1994, 116, 5475.
J. A. Halfen, S. Mahapatra, M. Olmstead, W. B. Tolman, J.
Am. Chem. Soc. 2000, 126, 2173.
W. B. Tolman, Inorg. Chem. 1991, 30, 4880.
M. Hoshino, M. Maeda, R. Konishi, H. P. C. Ford, J. Am.
Chem. Soc. 1996, 118, 5702.
was carried out in solutions containing also 0.08 NaClO
4
and
[33]
0
.08 acetic acid. The EPR spectrum of PN (thin line) which does
Ϫ4
not change after mixing 1:1 2.0 ϫ 10 PN with 0.03 NaNO
2
,
[34]
[35]
0
.10 NaClO , 0.20 acetic acid. The final pH was 4.7, the solu-
4
tions were helium-saturated, ν ϭ 9.424 GHz.
Eur. J. Inorg. Chem. 2004, 3675Ϫ3680
www.eurjic.org
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3679