Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
E.; Doctorovich, F. Polyhedron 2007, 26, 4673–4679.
(12) Martí, M. A.; Bari, S. E.; Estrin, D. A.; Doctorovich, F. J. Am.
Chem. Soc. 2005, 127, 4680–4684.
(13) Boron, I.; Suárez, S. A.; Doctorovich, F.; Martí, M. A.; Bari, S. E.
J. Inorg. Biochem. 2011, 105, 1044–1049.
(14) Miranda, K. M.; Dutton, A. S.; Ridnour, L. a; Foreman, C. a; Ford,
E.; Paolocci, N.; Katori, T.; Tocchetti, C. G.; Mancardi, D.; Thomꢀ
as, D. D.; Espey, M. G.; Houk, K. N.; Fukuto, J. M.; Wink, D. a. J.
Am. Chem. Soc. 2005, 127, 722–731.
for HNO bioactivity. Due to the high reactivity of HNO, it is
expected that its steady state concentration inside cells should
be several orders of magnitude lower than that of NO. Thereꢀ
fore the “physiological” redox potential for the (NO,
H+/HNO) couple is probably even more positive than that of
(O2/O2●ꢀ), i.e. easily accessible. With the expanding arsenal of
analytical tools for HNO detection36,38,45–47 both in solution
and in cells, there is no doubt that we are getting closer to
understand the in vivo chemistry of HNO.
(15) Liochev, S. I.; Fridovich, I. Free Radic. Biol. Med. 2003, 34,
1399–1404.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) Ma, X. L.; Gao, F.; Liu, G. L.; Lopez, B. L.; Christopher, T. A.;
Fukuto, J. M.; Wink, D. A.; Feelisch, M. Proc. Natl. Acad. Sci. U.
S. A. 1999, 96, 14617.
(17) Ma, X. L.; Weyrich, A. S.; Lefer, D. J.; Lefer, A. M. Circ. Res.
1993, 72, 403–412.
(18) Switzer, C. H.; FloresꢀSantana, W.; Mancardi, D.; Donzelli, S.;
Basudhar, D.; Ridnour, L. a; Miranda, K. M.; Fukuto, J. M.; Paoꢀ
locci, N.; Wink, D. a. Biochim. Biophys. Acta 2009, 1787, 835–
840.
(19) Doctorovich, F.; Bikiel, D.; Pellegrino, J.; Suárez, S. A.; Larsen,
A.; Martí, M. A. Coord. Chem. Rev. 2011, 255, 2764–2784.
(20) Fukuto, J. M.; Bartberger, M. D.; Dutton, A. S.; Paolocci, N.;
Wink, D. a; Houk, K. N. Chem. Res. Toxicol. 2005, 18, 790–801.
(21) Doctorovich, F.; Bikiel, D. E. D. E.; Pellegrino, J.; Suárez, S. A. S.
A.; Martí, M. A. M. A. In Progress in Inorganic Chemistry; Kenꢀ
neth D. Karlin, John Wiley & Sons, Inc, 2014.
(22) Stoll, S.; NejatyJahromy, Y.; Woodward, J. J.; Ozarowski, A.;
Marletta, M. A.; Britt, R. D. J. Am. Chem. Soc. 2010, 132, 11812–
11823.
(23) Donzelli, S.; Graham, M.; FloresꢀSantana, W.; Switzer, C. H.; Yeh,
G. C.; Huang, J.; Stuehr, D. J.; King, S. B.; Miranda, K. M.; Wink,
D. A.; Espey, M. G.; FloresꢀSantana, W.; Switzer, C. H.; Yeh, G.
C.; Huang, J.; Stuehr, D. J.; King, S. B.; Miranda, K. M.; Wink, D.
A. Free Radic. Biol. Med. 2008, 45, 578–584.
(24) Filipovic, M. R. M.; Miljkovic, J. L. J.; Nauser, T.; Royzen, M.;
Klos, K.; Shubina, T.; Koppenol, W. H.; Lippard, S. J.; Ivanovićꢀ
Burmazović, I.; Ivanovic, I. J. Am. Chem. Soc. 2012, 134, 12016–
12027.
(25) Eberhardt, M.; Dux, M.; Namer, B.; Miljkovic, J.; Cordasic, N.;
Will, C.; Kichko, T. I.; de la Roche, J.; Fischer, M.; Suárez, S. A.;
Bikiel, D.; Dorsch, K.; Leffler, A.; Babes, A.; Lampert, A.; Lenꢀ
nerz, J. K.; Jacobi, J.; Martí, M. A.; Doctorovich, F.; Högestätt, E.
D.; Zygmunt, P. M.; IvanovicꢀBurmazovic, I.; Messlinger, K.;
Reeh, P.; Filipovic, M. R.; Roche, J. de la; Fischer, M.; Bikiel, D.;
Suárez, S. A.; Dorsch, K.; Leffler, A.; Babes, A.; Lampert, A.;
Lennerz, J. K.; Jacobi, J.; Martí, M. A.; Doctorovich, F.; Högestätt,
E. D.; Zygmunt, P. M.; IvanovicꢀBurmazovic, I.; Messlinger, K.;
Reeh, P.; Filipovic, M. R. Nat. Comm. 2014, 5, 4381.
(26) Kytzia, A.; Korth, H.ꢀG.; Sustmann, R.; Groot, H. De; Kirsch, M.;
de Groot, H.; Kirsch, M. Chemistry 2006, 12, 8786–8797.
(27) FloresꢀSantana, W.; Salmon, D. J.; Donzelli, S.; Switzer, C. H.;
Basudhar, D.; Ridnour, L.; Cheng, R.; Glynn, S. A.; Paolocci, N.;
Fukuto, J. M.; Miranda, K. M.; Wink, D. A. Antioxid. Redox Sig-
nal. 2011, 14, 1659–1674.
(28) Venâncio, M.; Doctorovich, F.; Rocha, W. J Phys Chem B. 2017,
121, 6618–6625.
(29) Suarez, S. A.; Neuman, N.; Muñoz, M.; Alvarez, L.; Brondino, C.;
Bikiel, D. E.; Martí, M. A.; Doctorovich, F. J. Am. Chem. Soc
2015, 137, 4720–4727.
(30) Hamer, M.; Suarez, S. A.; Neuman, N. I.; Alvarez, L.; Muñoz, M.;
Marti, M. A.; Doctorovich, F. Inorg. Chem. 2015, 54, 9342–9350.
(31) Reihlen, H.; Friedolsheim, A. V.; Oswald, W. Justus Liebigs Ann
Chem 1928, 465, 72–96.
(32) Pryor, W.; Church, D.; Govindan, C. J. Org. 1982, V (1), 156–159.
(33) DeMaster, E. G.; Quast, B. J.; Redfern, B.; Nagasawa, H. T. Bio-
chemistry 1995, 34, 11494–11499.
ASSOCIATED CONTENT
Kinetic analysis, ab initio calculations, and other experimental
details can be found in the Supporting Information. This material
AUTHOR INFORMATION
Corresponding Author
* doctorovich@qi.fcen.uba.ar
* marcelo@qi.fcen.uba.ar
Author Contributions
The manuscript was written through contributions of all authors. /
All authors have given approval to the final version of the manuꢀ
script. / ‡These authors contributed equally.
Funding Sources
This work was financially supported by UBA (UBACYT
20020130100642BA, 20020150100023BA), ANPCyT (PICT
2014ꢀ1278, PICT 2015ꢀ3854, and by the Bunge y Born Foundaꢀ
tion.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
SAS, MM and LA thank UBA & CONICET for a fellowship
grant, SAS, DEB, MAM and FD are members of CONICET.
MFV and WRR would like to thank the CNPq (Conselho
Nacional de Desenvolvimento Científico e Tecnológico, INCTꢀ
Catálise) and FAPEMIG (Fundação de Amparo à Pesquisa do
Estado de Minas Gerais) for financial support and research grant.
REFERENCES
(1) Shafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. U. S. A. 2002,
99, 7340–7345.
(2) Lymar, S. V; Shafirovich, V.; Poskrebyshev, G. A. Inorg. Chem.
2005, 44, 5212–5221.
(3) Doyle, M. P.; Mahapatro, S. N.; Broene, R. D.; Guy, J. K. J. Am.
Chem. Soc. 1988, 110, 593–599.
(4) Bartberger, M. D.; Fukuto, J. M.; Houk, K. N. Proc. Natl. Acad.
Sci. U. S. A. 2001, 98, 2194–2198.
(5) Sherman, M. P.; Grither, W. R.; McCulla, R. D. J. Org. Chem.
2010, 75, 4014–4024.
(6) Wong, P. P. S.ꢀY.; Hyun, J.; Fukuto, J. M. J.; Shirota, F. N.; Deꢀ
Master, E. G.; Shoeman, D. W.; Nagasawa, H. T. Biochemistry
1998, 37, 5362–5371.
(7) Shoeman, D. W.; Shirota, F. N.; DeMaster, E. G.; Nagasawa, H. T.
Alcohol 2000, 20, 55–59.
(8) Keceli, G.; Moore, C. D.; Toscano, J. P. Bioorg. Med. Chem. Lett.
2014, 24, 3710–3713.
(9) Ford, P. C. P. C. Inorg. Chem. 2010, 49 , 6226–6239.
(10) Hoshino, M.; Laverman, L.; Ford, P. C. Coord. Chem. Rev. 1999,
187, 75–102.
(34) Aravindakumar, C. T.; Ley, M. De; Ceulemans, J. J. Chem. Soc.
Perkin Trans. 2 2002, 3, 663–669.
(35) Jackson, M. I.; Han, T. H.; Serbulea, L.; Dutton, A.; Ford, E.;
Miranda, K. M.; Houk, K. N.; Wink, D. A.; Fukuto, J. M. Free
Radic. Biol. Med. 2009, 47, 1130–1139.
(11) Suárez, S. A.; Martí, M. A.; De Biase, P. M.; Estrin, D. a.; Bari, S.
ACS Paragon Plus Environment