H. Kim et al. / Chemical Physics 364 (2009) 90–97
97
distribution given in (A.4). The b parameter in this case is an adjust-
able parameter in the fit to the resultant oxygen atom data. It is
important to note that the angular distribution is defined relative
to primary step relative velocity vector. In the case of a long-lived
intermediate, relative to its rotational period, there is forward–
backward symmetry and b = 2.0 would represent the oblate top lim-
it and b = ꢀ1 the prolate top limit. The secondary dissociation has
azimuthal symmetry about the primary velocity vector.
A vector sum of the two dissociation steps provides a resultant
vector representing the O(3P2) atom velocity with respect to the
axis of linear polarization of the dissociation laser with a probabil-
ity equal to the joint probabilities of the individual vectors. Vector
of Nelson and co-workers at 248 nm. [13] As a first approximation
of the fraction of internal energy partitioned into the ClO fragment
for channel 2 we consider two limiting models; a prior, or statisti-
cal, model and an impulsive model. The prior model [39] yielded a
value of 0.21 while the soft-fragment impulsive model yielded
0.41. [40] We found that the best-fit to the data was obtained using
a value between these two cases.
To determine the best-fit to the data, the program was run with
a minimum sampling of 1 ꢃ 106 points. A v2 minimization of the
weighting of the secondary and primary Cl(2P3/2) speed distribu-
tions provided the branching ratio between channels 1 and 2. Once
an adequate fit of the speed distribution was achieved the derived
speed-dependent anisotropy was compared to the experimental
measurement and the optimization repeated.
addition of the two vectors (v1 and v2) was achieved by a coordi-
nate frame transformation via rotation using Euler angles. Once the
speed and angular distributions are obtained for the resultant oxy-
gen atom,
determined.
a
translational energy distribution, PðETÞ, can be
A.3. Spontaneous secondary dissociation in ClONO2
Fig. A3 shows the vector addition involved in evaluating deter-
mining the resultant O(3P2) atom speed and angular distributions.
Arising from a two-step dissociation. The relevant quantities have
been defined above. In the case of ClONO2, measurement of the
Cl(2P1/2) speed distribution yields both the speed distribution for
the momentum matched NO3 fragment, and by energy conserva-
tion the internal energy of the NO3 fragment,
References
[1] F.S. Rowland, J.E. Spencer, M.J. Molina, J. Phys. Chem. 80 (1976) 2711.
[2] F.S. Rowland, J.E. Spencer, M.J. Molina, J. Phys. Chem. 80 (1976) 2713.
[3] M.S. Zahniser, J.S. Chang, F. Kaufman, J. Chem. Phys. 67 (1977) 997.
[4] L.T. Molina, J.E. Spencer, M.J. Molina, Chem. Phys. Lett. 45 (1977) 158.
[5] A.R. Ravishankara, D.D. Davis, G. Smith, G. Tesi, J. Spencer, Geophys. Res. Lett. 4
(1977) 7.
[6] L.T. Molina, M.J. Molina, J. Photochem. 11 (1979) 139.
[7] A.M. Grana, T.J. Lee, M. Head-Gordon, J. Phys. Chem. 99 (1995) 3493.
[8] W.S. Smith, C.C. Chou, F.S. Rowland, Geophys. Res. Lett. 4 (1977) 517.
[9] S.M. Adler-Gordon, J.R. Wiesendfeld, Chem. Phys. Lett. 82 (1981) 281.
[10] A. De Saxce, L. Schriver, Chem. Phys. Lett. 199 (1992) 596.
[11] J.S. Chang, J.R. Barker, J.E. Davenport, D.M. Golden, Chem. Phys. Lett. 60 (1979)
385.
[12] W.J. Marinelli, H.S. Johnston, Chem. Phys. Lett. 93 (1982) 127.
[13] T.K. Minton, C.M. Nelson, T.A. Moore, M. Okumura, Chem. Phys. 2058 (1992)
1342.
1
2
Ea ¼ h
m
ꢀ DoðCl—ONO2Þ ¼
l
g2 þ EintðClÞ þ EintðNO3Þ;
ðA:7Þ
v
ail
o
where h
m
is the photon energy, Do(Cl–ONO2) is the bond dissocia-
o
tion energy of ClONO2, and Eint(Cl) and Eint(NO3) are the internal
energies of the Cl and NO3 fragments, respectively. Those NO3 frag-
ments with energy in excess of the NO2 + O threshold will undergo a
secondary dissociation. The energy available to the oxygen atoms
fragments is given by conservation of energy,
[14] C.M. Nelson, T.A. Moore, M. Okumura, T.K. Minton, Chem. Phys. 207 (1995)
287.
[15] T.A. Moore, M. Okumura, M. Tagawa, T.K. Minton, Faraday Discuss. Chem. Soc.
100 (1995) 295.
[16] C.M. Nelson, T.A. Moore, M. Okumura, T.K. Minton, J. Chem. Phys. 100 (1994)
8055.
[17] L. Goldfarb, A.-M. Schmoltner, M.K. Gilles, J.B. Burkholder, A.R. Ravishankara, J.
Phys. Chem. A. 101 (1997) 6658.
[18] R.J. Yokelson, J.B. Burkholder, R.W. Fox, A.R. Ravishankara, J. Phys. Chem. A. 101
(1997) 6667.
[19] P. Zou, J. Park, B.A. Schmitz, T. Nguyen, S.W. North, J. Phys. Chem. A 106 (2002)
1004.
[20] H. Kim, K.S. Dooley, E.R. Johnson, S.W. North, Rev. Sci. Instrum. 76 (2005)
124101.
1
2
Ea ¼ EintðNO3Þ ꢀ DoðNO2—OÞ ¼
l
g2 þ EintðOÞ þ EintðNO2Þ;
v
ail
o
ðA:8Þ
where DoðNO2—OÞ is the bond dissociation energy of NO3 (Ref. [41])
o
and Eint(j) is the internal energy of the jth species. Monte-Carlo sam-
pling is used to select the secondary speed of the oxygen atoms,
weighted according to the SSE model, appropriate for statistical dis-
sociation [42]. The polar angle (h2) is sampled using the probability
[21] H. Kim, K.S. Dooley, E.R. Johnson, S.W. North, J. Chem. Phys. 124 (2006)
134304.
[22] S. Arepalli, N. Presser, D. Robie, R.J. Gordon, Chem. Phys. Lett. 117 (1985) 64.
[23] D.J. Banford, L.E. Jusinsk, W.K. Bischel, Phys. Rev. A 34 (1986) 185.
[24] A.T. Eppink, D.H. Parker, Rev. Sci. Instrum. 68 (1997) 3447.
[25] B.-Y. Chang, R.C. Hoetzlein, J.A. Mueller, J.D. Geisler, P.L. Houston, Rev. Sci.
Instrum. 69 (1998) 1665.
z
[26] V. Drinbinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73
(2002) 2634.
[27] M. Schmeisser, Inorg. Synth. 9 (1967) 127.
θ2
v
[28] G.H. Cady, Inorg. Synth. 5 (1957) 156.
v2
[29] Although not observed, any signal arising from the photodissociation of Cl2
will result sharp rings on the raw images which can be easily distinguished
from the signal arising from ClONO2 photodissociation.
[30] H. Kim, J. Park, T.C. Niday, S.W. North, J. Chem. Phys. 123 (2005) 174303.
[31] H. Kim, Ph.D. Thesis, Texas A&M University, 2006.
[32] H.F. Davis, B. Kim, H.S. Johnston, Y.T. Lee, J. Phys. Chem. 97 (1993) 2172.
[33] D. Townsend, S.A. Lahankar, S.K. Lee, S.D. Chambreau, A.G. Suits, X. Zhang, J.
Rheinecker, L.B. Harding, J.M. Bowman, Science 306 (2004) 1158.
[34] R.N. Zare, Mol. Photochem. 4 (1972) 1.
θ
θ1
v1
[35] S.W. North, A.J. Marr, A. Furlan, G.E. Hall, J. Phys. Chem. A. 101 (1998) 9224.
[36] L.C. Anderson, D.W. Fahey, J. Phys. Chem. 94 (1990) 644.
[37] P. Zou, A. Deresckei-Kovacs, S.W. North, J. Phys. Chem. A 107 (2003) 888.
[38] P.W. McLoughlin, C.R. Park, J.R. Wiesenfeld, J. Mol. Spectrosc. 162 (1993) 307.
[39] E. Zamir, R.D. Levine, Chem. Phys. 52 (1980) 253.
[40] G.E. Busch, K.R. Wilson, J. Chem. Phys. 56 (1972) 3639.
[41] H.F. Davis, B. Kim, H.S. Johnson, Y.T. Lee, J. Phys. Chem. 97 (1993) 2172.
[42] C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite, G. Radhakrishnan, J.
Chem. Phys. 83 (1985) 5581.
Fig. A3. Coordinate system for the forward-convolution fitting of spontaneous
dissociation. Parameters for Cl + NO3 dissociation (
measurement. P( ,h) describes the laboratory speed and angular distributions for
O(3P2) arising from spontaneous dissociation of NO3.
v1,h1) are based on the previous
v