Electronic Modification of Water Oxidation Catalysts
A R T I C L E S
bimetallic complexes of different geometries containing Ru and
Mn active sites,16-21 and polyoxometallic complexes containing
Ru or Co.22-24
related compounds15), the completely inorganic Ru-substituted
polytungstate cluster [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10-
(II),22,23,41,42 the dimeric complexes {[Ru(tpy)(OH2)]2(µ-bpp)}3+
(III; bpp ) bis(2-pyridyl)-3,5-pyrazolate)43 and [(tpy)(OH2)-
MnIII(O)2MnIV(OH2)(tpy)]3+ (tpy ) 2,2′;6′,2′′-terpyridine),44 and
others,13 there remain many advantages to the study of single-
site Ru(II) complexes; e.g., synthetic accessibility; relatively
well-defined spectroscopic and electrochemical properties for
in situ studies; lower susceptibility to annation and lower
computational time required for modeling studies.29,37,45 Meyer
et al. have taken advantage of these attributes to quantitatively
describe a catalytic pathway negotiated by [RuII(tpy)(bpm)-
(OH2)]2+ (IV; bpm ) 2,2′-bipyrimidine), [RuII(tpy)(bpz)-
(OH2)]2+ (V; bpz ) 2,2′-pipyrazine), and related compo-
unds.25,29,31,46 The importance of this elegant work lies in the
fact that it is one of the most well-defined pathways determined
for a homogeneous water oxidation catalyst to date. A particu-
larly compelling outcome of this analysis is the possibility that
two catalytic pathways (i.e., Ru(II)/Ru(V) vs Ru(III)/Ru(V)) are
operative depending on the conditions employed. Expanding
on these studies, they have also provided experimental evidence
to explain in explicit detail the critical O-O bond formation
process.47
The landscape of homogeneous water oxidation catalysis has
changed substantially in light of the recent discoveries that
single-site complexes are capable of facilitating dioxygen
formation from water.25 The rapidly growing catalogue of
mononuclear water oxidation catalysts now includes a family
of cyclometalated Ir complexes reported by Bernhard et al.,26
and a cyclopentadienyl Ir derivative documented by Crabtree
and Brudvig.27 There is also an extensive suite of polypyridyl
Ru catalysts that have been independently reported by the
research programs headed by Thummel,17,28 Meyer,25,29-31
Sun32 and Sakai.33 A related set of complexes have also served
as useful platforms for reducing water directly to dihydrogen,34
oxidizing water with the assistance of light,24,35,36 and unraveling
the intricate reaction details with theory.37
Despite these significant breakthroughs, there remains interest
in gaining a precise understanding of the mechanistic details of
water oxidation to further the collective pursuit of highly active
catalysts that are not susceptible to deactivation. While there
has been a wealth of knowledge gained by the extensive
mechanistic and/or computational studies on I14,38-40 (and
Building on these collective observations, our group is
expanding the development of the water oxidation catalyst,
[RuII(tpy)(bpy)(OH2)]2+ (1), to unravel the myriad catalytic
pathways that may be possible during the oxidation of water.48
We consider this complex, which was first reported to be a water
oxidation catalyst in convincing fashion by Sakai et al.,33 to
have broad utility for furthering the development of homoge-
neous water oxidation catalysts because of the inherent tun-
ability, stability in solution, and well-defined electrochemical
and spectroscopic handles. By installing electron-donating and
-withdrawing groups about the periphery of the polypyridyl
ligands, for example, we have been able to directly correlate
how catalytic activity and catalyst deactivation are affected by
electron density at the metal.48
(16) Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.;
Crabtree, R. H.; Brudvig, G. W. Science 1999, 283, 1524–1527.
(17) Zong, R.; Thummel, R. J. Am. Chem. Soc. 2005, 127, 12802–12803.
(18) Muckerman, J. T.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E.
Inorg. Chem. 2008, 47, 1787–1802.
(19) Wada, T.; Tsuge, K.; Tanaka, K. Angew. Chem., Int. Ed. 2000, 39,
1479–1482.
(20) Sens, C.; Romero, I.; Rodriguez, M.; Llobet, A.; Parella, T.; Benet-
Buchholz, J. J. Am. Chem. Soc. 2004, 126, 7798–7799.
(21) Deng, Z. P.; Tseng, H. W.; Zong, R. F.; Wang, D.; Thummel, R. Inorg.
Chem. 2008, 47, 1835–1848.
(22) Geletii, Y. V.; Botar, B.; Kögerler, P.; Hillesheim, D. A.; Musaev,
D. G.; Hill, C. L. Angew. Chem., Int. Ed. 2008, 47, 3896–3899.
(23) Sartorel, A.; Carraro, M.; Scorrano, G.; De Zorzi, R.; Geremia, S.;
McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008,
130, 5006–5007.
(24) Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.;
Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. Science 2010,
328, 342–345.
In this work, we further evaluate the mechanistic details
associated with water splitting using a suite of Ru catalysts with
electron-donating and -withdrawing substituents at the activating
positions of the scaffold [RuII(tpy)(bpy-R)(OH2)]2+ [R ) sH
(1); sOMe (2); and -CO2H (3); bpy-OMe ) 4,4′-dimethoxy-
2,2′-bipyridine; bpy-CO2H ) 4,4′-dicarboxy-2,2′-bipyridine;
Figure 1]. (Notation used in this article to describe redox and
protonation levels: [RuIIsOH2]2+ ) [RuII(tpy)(bpy-R)(OH2)]2+;
(25) Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.;
Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer,
T. J. Acc. Chem. Res. 2009, 42, 1954–1965.
(26) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S. J. Am.
Chem. Soc. 2008, 130, 210–217.
(27) Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein,
O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2009, 131,
8730–8731.
[RuIIIsOH2]3+ ) [RuIII(tpy)(bpy-R)(OH2)]3+; [RuIVdO]2+
)
(28) Tseng, H.; Zong, R.; Muckerman, J. T.; Thummel, R. Inorg. Chem.
2008, 47, 11763–11773.
(29) Concepcion, J. J.; Tsai, M.-K.; Muckerman, J. T.; Meyer, T. J. J. Am.
Chem. Soc. 2010, 132, 1545–1557.
(40) Binstead, R. A.; Chronister, C. W.; Ni, J.; Hartshorn, C. M.; Meyer,
T. J. J. Am. Chem. Soc. 2000, 122, 8464–8473.
(30) Concepcion, J. J.; Jurss, J. W.; Norris, M. R.; Chen, Z.; Templeton,
J. L.; Meyer, T. J. Inorg. Chem. 2010, 49, 1277–1279.
(31) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am.
Chem. Soc. 2008, 130, 16462–16463.
(41) Geletii, Y. V.; Huang, Z.; Hou, Y.; Musaev, D. G.; Lian, T.; Hill,
C. L. J. Am. Chem. Soc. 2009, 131, 7522–7523.
(42) Sartorel, A.; Miro, P.; Salvadori, E.; Romain, S.; Carraro, M.; Scorrano,
G.; Di Valentin, M.; Llobet, A.; Bo, C.; Bonchio, M. J. Am. Chem.
Soc. 2009, 131, 16051–16053.
(32) Duan, L. L.; Fischer, A.; Xu, Y. H.; Sun, L. C. J. Am. Chem. Soc.
2009, 131, 10397–10399.
(33) Masaoka, S.; Sakai, K. Chem. Lett. 2009, 38, 182–183.
(34) Karunadasa, H. I.; Chang, C. J.; Long, J. R. Nature 2010, 464, 1329–
1333.
(43) Bozoglian, F.; Romain, S.; Ertem, M. Z.; Todorova, T. K.; Sens, C.;
Mola, J.; Rodriguez, M.; Romero, I.; Benet-Buchholz, J.; Fontrodona,
X.; Cramer, C. J.; Gagliardi, L.; Llobet, A. J. Am. Chem. Soc. 2009,
131, 15176–15187.
(35) Duan, L.; Xu, Y.; Zhang, P.; Wang, M.; Sun, L. Inorg. Chem. 2010,
49, 209–215.
(44) Limburg, J.; Vrettos, J. S.; Chen, H.; de Paula, J. C.; Crabtree, R. H.;
Brudvig, G. W. J. Am. Chem. Soc. 2001, 123, 423–430.
(45) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140–8160.
(46) Chen, Z.; Concepcion, J. J.; Jurss, J. W.; Meyer, T. J. J. Am. Chem.
Soc. 2009, 131, 15580–15581.
(36) Besson, C.; Huang, Z.; Geletii, Y. V.; Lense, S.; Hardcastle, K. I.;
Musaev, D. G.; Lian, T.; Proust, A.; Hill, C. L. Chem. Commun. 2010,
46, 2784–2786.
(37) Wang, L.-P.; Wu, Q.; Van Voorhis, T. Inorg. Chem. 2010, 49, 4543–
4553.
(47) Chen, Z.; Concepcion, J. J.; Hu, X.; Yang, W.; Hoertz, P. G.; Meyer,
T. J. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7225–7229.
(48) Wasylenko, D. J.; Ganesamoorthy, C.; Koivisto, B. D.; Henderson,
M. A.; Berlinguette, C. P. Inorg. Chem. 2010, 49, 2202–2209.
(38) Yang, X.; Baik, M.-H. J. Am. Chem. Soc. 2004, 126, 13222–13223.
(39) Yamada, H.; Siems, W. F.; Koike, T.; Hurst, J. K. J. Am. Chem. Soc.
2004, 126, 9786–9795.
9
J. AM. CHEM. SOC. VOL. 132, NO. 45, 2010 16095