2
2
L. He et al. / Journal of Photochemistry and Photobiology A: Chemistry 216 (2010) 15–23
[
11] M. Yoshida, J. Aihara, Validity of the weighted HOMO–LUMO energy separation
as an index of kinetic stability for fullerenes with up to 120 carbon atoms, Phys.
Chem. Chem. Phys. 1 (1999) 227–230.
[42] Z. Guo, F. Du, D.M. Ren, Y.S. Chen, J.Y. Zheng, Z.B. Liu, J.G. Tian, Covalently
porphyrin-functionalized single-walled carbon nanotubes: a novel photoac-
tive and optical limiting donor–acceptor nanohybrid, J. Mater. Chem. 16 (2006)
3021–3030.
[43] D.M. Ren, Z. Guo, F. Du, Z.F. Liu, Z.C. Zhou, X.Y. Shi, Y.S. Chen, J.Y. Zheng, A novel
soluble Tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid
with light harvesting properties, Int. J. Mol. Sci. 9 (2008) 45–55.
[44] D.M. Ren, Z. Guo, F. Du, J.Y. Zheng, Y.S. Chen, Nanohybrid material of SWNTs
covalently functionalized with porphyrin for light harvesting antenna: synthe-
sis and photophysical properties, J. Nanosci. Nanotechnol. 7 (2007) 1539–1545.
[45] S. Campidelli, C. Sooambar, E.L. Diz, C. Ehli, D.M. Guldi, M. Prato, Dendrimer-
functionalized single-wall carbon nanotubes: synthesis, characterization, and
photoinduced electron transfer, J. Am. Chem. Soc. 128 (2006) 12544–12552.
[46] T. Umeyama, M. Fujita, N. Tezuka, N. Kadota, Y. Matano, K. Yoshida, S. Isoda, H.
Imahori, Electrophoretic deposition of single-walled carbon nanotubes cova-
lently modified with bulky porphyrins on nanostructured SnO2 electrodes for
photoelectrochemical devices, J. Phys. Chem. C 111 (2007) 11484–11493.
[47] A. Osuka, H. Shimidzu, meso,meso-linked porphyrin arrays, Angew. Chem. Int.
Ed. 36 (1997) 135–137.
[
[
12] J. Aihara, H. Kanno, General features of the polyene references graph-
theoretically defined for fullerenes, Chem. Phys. Lett. 398 (2004) 440–444.
13] G.M.A. Rahman, D.M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, M.
Prato, Combining single wall carbon nanotubes and photoactive polymers for
photoconversion, J. Am. Chem. Soc. 127 (2005) 10051–10057.
[
[
14] E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated poly-
mer photovoltaic devices, Appl. Phys. Lett. 80 (2002) 112–114.
15] E. Kymakis, I. Alexandrou, G.A.J. Amaratunga, High open-circuit voltage photo-
voltaic devices from carbon–nanotube–polymer composites, J. Appl. Phys. 93
(
2003) 1764–1768.
[16] E. Kymakis, G.A.J. Amaratunga, Photovoltaic cells based on dye-sensitisation of
single-wall carbon nanotubes in a polymer matrix, Sol. Energy Mater. Sol. Cells
8
0 (2003) 465–472.
[
[
17] B.J. Landi, R.P. Raffaelle, S.L. Castro, S.G. Bailey, Single-wall carbon
nanotube–polymer solar cells, Prog. Photovoltaics 13 (2005) 165–172.
18] M.Y. Okamura, G. Feher, N. Nelson, in: Govindjee (Ed.), Photosynthesis, New
York, 1982.
[48] A. Tsuda, A. Osuka, Fully conjugated porphyrin tapes with electronic absorption
bands that reach into infrared, Science 293 (2001) 79–82.
[
[
19] G. Feher, M.Y. Okamura, The Photosynthetic Bacteria, Plenum, New York, 1978.
20] K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook, Academic Press,
New York, 1999.
[49] R.G. Khoury, L. Jaquinod, K.M. Smith, Rational approach to the synthesis of meso-
ꢀ
meso (5,5 ) linked bisporphyrins, Chem. Commun. (1997) 1057–1058.
[
21] D.M. Guldi, A. Rahman, V. Sgobba, C. Ehli, Multifunctional molecular carbon
[50] H. Imahori, K. Tamaki, Y. Araki, Y. Sekiguchi, O. Ito, Y. Sakata, S. Fukuzumi,
Stepwise charge separation and charge recombination in ferrocene-meso,meso-
linked porphyrin dimer–fullerene triad, J. Am. Chem. Soc. 124 (2002)
5165–5174.
Note: The reference is for radical cation of meso-meso linked zinc porphyrin
dimer.
[51] K. Susumu, T. Shimidzu, K. Tanaka, H. Segawa, Synthesis of novel porphyrin
arrays directly-linked through the meso-carbons, Tetrahedron Lett. 37 (1996)
8399–8402.
[52] M. Graca, H. Vicente, L. Jaquinod, K.M. Smith, Oligomeric porphyrin arrays,
Chem. Commun. (1999) 1771–1782.
[53] M.A. Miller, R.K. Lammi, S. Prathapan, D. Holten, J.S. Lindsey, A tightly cou-
pled linear array of perylene, bis(porphyrin), and phthalocyanine units that
functions as a photoinduced energy-transfer cascade, J. Org. Chem. 65 (2000)
6634–6649.
[54] C. Clausen, D.T. Gryko, A.A. Yasseri, J.R. Diers, D.F. Bocian, W.G. Kuhr, J.S.
Lindsey, Investigation of tightly coupled porphyrin arrays comprised of iden-
tical monomers for multibit information storage, J. Org. Chem. 65 (2000)
7371–7378.
materials—from fullerenes to carbon nanotubes, Chem. Soc. Rev. 35 (2006)
4
71–487.
[
[
[
22] H. Imahori, Y. Sakata, Fullerenes as novel accepters in photosynthetic electron
transfer, Eur. J. Org. Chem. (1999) 2445–2457.
23] D.M. Guldi, Fullerenes: three dimensional electron acceptor materials, Chem.
Commun. (2000) 321–327.
24] D. Kuciauskas, P.A. Liddell, S. Lin, S.G. Stone, A.L. Moore, T.A. Moore, D. Gust,
Photoinduced electron transfer in carotenoporphyrin–fullerene triads: tem-
perature and solvent effects, J. Phys. Chem. B 104 (2000) 4307–4321.
25] D.M. Guldi, Fullerene–porphyrin architectures; photosynthetic antenna and
reaction center models, Chem. Soc. Rev. 31 (2002) 22–36.
26] T. Vuorinen, K. Kaunisto, N.V. Tkachenko, A. Efimov, H. Lemmetyinen, Photoin-
duced interlayer electron transfer in alternating porphyrin–fullerene dyad and
regioregular poly(3-hexylthiophene) Langmuir–Blodgett films, J. Photochem.
Photobiol. A: Chem. 178 (2006) 185–191.
[
[
[27] H. Imahori, M. Kimura, K. Hosomizu, S. Fukuzumi, Porphyrin and fullerene-
based photovoltaic devices, J. Photochem. Photobiol. A: Chem. 166 (2004)
5
7–62.
[
[
[
28] D.M. Guldi, Biomimetic assemblies of carbon nanostructures for photochemical
[55] J.L. Bahr, J.M. Tour, Highly functionalized carbon nanotubes using in situ gen-
erated diazonium compounds, Chem. Mater. 13 (2001) 3823–3824.
[56] N. Aratani, A. Osuka, Synthesis of meso-meso linked hybrid porphyrin arrays by
Pd-catalyzed cross-coupling reaction, Org. Lett. 3 (2001) 4213–4216.
[57] L.C. Xu, Z.Y. Li, W. Tan, T.J. He, F.C. Liu, D.M. Chen, Density functional theory
studies on the Raman and IR spectra of meso-tetraphenylporphyrin diacid,
Spectrochim. Acta A 62 (2005) 850–862.
energy conversion, J. Phys. Chem. B 109 (2005) 11432–11441.
29] P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for
solar energy conversion, J. Phys. Chem. C 111 (2007) 2834–2860.
30] H. Murakami, T. Nomura, N. Nakashima, Noncovalent porphyrin-
functionalized single-walled carbon nanotubes in solution and the formation
of porphyrin–nanotube nanocomposites, Chem. Phys. Lett. 378 (2003)
4
81–485.
[58] I. Robel, B.A. Bunker, P.V. Kamat, Single-walled carbon nanotube–CdS
nanocomposites as light-harvesting assemblies: photoinduced charge-transfer
interactions, Adv. Mater. 17 (2005) 2458–2463.
[
[
31] G.M.A. Rahman, D.M. Guldi, S. Campidelli, M. Prato, Electronically interacting
single wall carbon nanotube–porphyrin nanohybrids, J. Mater. Chem. 16 (2006)
6
2–65.
[59] W.H. Zhu, N. Minami, S. Kazaoui, Y. Kim, Fluorescent chromophore func-
tionalized single-wall carbon nanotubes with minimal alteration to their
characteristic one-dimensional electronic states, J. Mater. Chem. 13 (2003)
2196–2201.
32] H.P. Li, B. Zhou, Y. Lin, L.R. Gu, W. Wang, K.A.S. Fernando, S. Kumar,
L.F. Allard, Y.P. Sun, Selective interactions of porphyrins with semicon-
ducting single-walled carbon nanotubes, J. Am. Chem. Soc. 126 (2004)
1
014–1015.
[60] N. Armaroli, G. Accorsi, J.P. Gisselbrecht, M. Gross, V. Krasnikov, D. Tsamouras,
G. Hadziioannou, M.J. Gomez-Escalonilla, F. Langa, J.F. Eckert, J.F. Nierengarten,
Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline
derivatives substituted with an oligophenylenevinylene moiety, J. Mater.
Chem. 12 (2002) 2077–2087.
[
[
33] T. Hasobe, S. Fukuzumi, P.V. Kamat, Ordered assembly of protonated porphyrin
driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods, J.
Am. Chem. Soc. 127 (2005) 11884–11885.
34] J. Liu, O. Bibari, P. Mailley, J. Dijon, E. Rouviere, F. Sauter-Starace, P. Caillat,
F. Vinet, G. Marchand, Stable non-covalent functionalisation of multi-walled
carbon nanotubes by pyrene–polyethylene glycol through – stacking, New
J. Chem. 33 (2009) 1017–1024.
35] A. Satake, Y. Miyajima, Y. Kobuke, Porphyrin–carbon nanotube composites
formed by noncovalent polymer wrapping, Chem. Mater. 17 (2005) 716–724.
36] D.M. Guldi, H. Taieb, G.M.A. Rahman, N. Tagmatarchis, M. Prato, Novel photoac-
tive single-walled carbon nanotube–porphyrin polymer wraps: efficient and
long-lived intracomplex charge separation, Adv. Mater. 17 (2005) 871–875.
37] D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci,
S.H. Qin, W.T. Ford, D. Balbinot, N. Jux, N. Tagmatarchis, M. Prato,
Donor–acceptor nanoensembles of soluble carbon nanotubes, Chem. Commun.
[61] C. Trieflinger, H. Rohr, K. Rurack, J. Daub, Multiple switching and
photogated electrochemiluminescence expressed by
a
dihydroazu-
lene/boron dipyrromethene dyad, Angew. Chem. Int. Ed. 44 (2005)
6943–6947.
[
[62] C. Laurence, P. Nicolet, M.T. Dalati, The empirical treatment of solvent-solute
interactions: 15 years of *, J. Phys. Chem. 98 (1994) 5807–5816.
[63] F. D’Souza, R. Chitta, A.S.D. Sandanayaka, N.K. Subbaiyan, L. D’Souza, Y. Araki,
O. Ito, Self-assembled single-walled carbon nanotube: zinc–porphyrin hybrids
through ammonium ion-crown ether interaction: construction and electron
transfer, Chem. Eur. J. 13 (2007) 8277–8284.
[
[
[
[64] D. Rehm, A. Weller, Kinetics of fluorescence quenching by electron and
hydrogen-atom transfer, Isr. J. Chem. 8 (1970) 259–271.
(
2004) 2034–2035.
38] D.M. Guldi, G.M.A. Rahman, N. Jux, D. Balbinot, U. Hartnagel, N. Tagmatarchis, M.
Prato, Functional single-wall carbon nanotube nanohybrids-associating SWNTs
with water-soluble enzyme model systems, J. Am. Chem. Soc. 127 (2005)
[65] M. Fujitsuka, O. Ito, H. Imahori, K. Yamada, H. Yamada, Y. Sakata, Long-lived
charge separation with high quantum yield in a ferrocene–porphyrin–fullerene
triad, Chem. Lett. 28 (1999) 721–722.
9
830–9838.
[66] H. Imahori, H. Yamada, Y. Nishimura, I. Yamazaki, Y. Sakata, Vectorial multistep
electron transfer at the gold electrodes modified with self-assembled mono-
layers of ferrocene–porphyrin–fullerene triads, J. Phys. Chem. B 104 (2000)
2099–2108.
[
[
[
39] D.M. Guldi, G.M.A. Rahman, M. Prato, N. Jux, S.H. Qin, W. Ford, Single-wall
carbon nanotubes as integrative building blocks for solar-energy conversion,
Angew. Chem. Int. Ed. 44 (2005) 2015–2018.
40] D.M. Guldi, G.M.A. Rahman, N. Jux, N. Tagmatarchis, M. Prato, Integrating single-
wall carbon nanotubes into donor–acceptor nanohybrids, Angew. Chem. Int. Ed.
[67] H. Imahori, K. Tamaki, H. Yamada, K. Yamada, Y. Sakata, Y. Nishimura, I.
Yamazaki, M. Fujitsuka, O. Ito, Photosynthetic electron transfer using fullerenes
as novel acceptors, Carbon 38 (2000) 1599–1605.
[68] C. Luo, D.M. Guldi, H. Imahori, K. Tamaki, K. Sakata, Sequential energy and
electron transfer in an artificial reaction center: formation of a long-lived
charge-separated state, J. Am. Chem. Soc. 122 (2000) 6535–6551.
4
3 (2004) 5526–5530.
41] H.P. Li, R.B. Martin, B.A. Harruff, R.A. Carino, L.F. Allard, Y.P. Sun, Single-walled
carbon nanotubes tethered with porphyrins: synthesis and photophysical
properties, Adv. Mater. 16 (2004) 896–900.