Page 7 of 9
Journal of the American Chemical Society
1
(8)Zhang, Z.; Chen, Y.-A.; Hung, W.-Y.; Tang, W.-F.; Hsu, Y.-H.; Chen,
to afford N(1)Me-(2,6-aza)Ind (99 mg, 90%) as white solids. H
C.-L.; Meng, F.-Y.; Chou, P.-T. Chem. Mater. 2016, 28, 8815.
(9)Stoner-Ma, D.; Jaye, A. A.; Matousek, P.; Towrie, M.; Meech, S. R.;
Tonge, P. J. J. Am. Chem. Soc. 2005, 127, 2864.
(10)Mandal, A.; Misra, R. J. Lumin. 2014, 150, 25.
(11)Laptenok, S. P.; Conyard, J.; Page, P. C. B.; Chan, Y.; You, M.; Jaffrey,
S. R.; Meech, S. R. Chem. Sci. 2016, 7, 5747.
(12)McMorrow, D.; Kasha, M. J. Am. Chem. Soc. 1983, 105, 5133.
(13)Van Benthem, M. H.; Gillispie, G. D. J. Phys. Chem. 1984, 88, 2954.
(14)Strandjord, A. J. G.; Barbara, P. F. J. Phys. Chem. 1985, 89, 2355.
(15)Lee, S.-I.; Jang, D.-J. J. Phys. Chem. 1995, 99, 7537.
(16)Park, S.-Y.; Kim, B.; Lee, Y.-S.; Kwon, O.-H.; Jang, D.-J. Photochem.
Photobiol. Sci. 2009, 8, 1611.
(17)Kwon, O.-H.; Mohammed, O. F. Phys. Chem. Chem. Phys. 2012, 14,
8974.
(18)Shen, J.-Y.; Chao, W.-C.; Liu, C.; Pan, H.-A.; Yang, H.-C.; Chen, C.-L.;
Lan, Y.-K.; Lin, L.-J.; Wang, J.-S.; Lu, J.-F.; Chun-Wei Chou, S.; Tang, K.-C.;
Chou, P.-T. Nat. Commun 2013, 4, 2611.
(19)Chao, W.-C.; Shen, J.-Y.; Lu, J.-F.; Wang, J.-S.; Yang, H.-C.; Wee, K.;
Lin, L.-J.; Kuo, Y.-C.; Yang, C.-H.; Weng, S.-H.; Huang, H.-C.; Chen, Y.-H.;
Chou, P.-T. J. Phys. Chem. B 2015, 119, 2157.
(20)Sakota, K.; Komoto, Y.; Nakagaki, M.; Ishikawa, W.; Sekiya, H. Chem.
Phys. Lett. 2007, 435, 1.
(21)Sakota, K.; Inoue, N.; Komoto, Y.; Sekiya, H. J. Phys. Chem. A 2007,
111, 4596.
(22)Kyrychenko, A.; Herbich, J.; Wu, F.; Thummel, R. P.; Waluk, J. J. Am.
Chem. Soc. 2000, 122, 2818.
(23)Waluk, J. Acc. Chem. Res. 2003, 36, 832.
(24)Kyrychenko, A.; Wu, F.; Thummel, R. P.; Waluk, J.; Ladokhin, A. S. J.
Phys. Chem. B 2010, 114, 13574.
(25)Tucker, T. J.; Sisko, J. T.; Tynebor, R. M.; Williams, T. M.; Felock, P. J.;
Flynn, J. A.; Lai, M.-T.; Liang, Y.; McGaughey, G.; Liu, M.; Miller, M.;
Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.; Prasad, S.; Reid, J. C.;
Sanchez, R.; Torrent, M.; Vacca, J. P.; Wan, B.-L.; Yan, Y. J. Med. Chem.
2008, 51, 6503.
1
2
3
4
5
6
7
8
NMR (400 MHz, CDCl3): δ 8.86 (s, 1H), 8.25 (d, J = 5.6 Hz, 1H),
7.51 (d, J = 5.6 Hz, 1H), 4.07 (s, 1H), 2.54 (s, 1H). 13C NMR (100
MHz, CDCl3) : δ 141.1, 137.9, 137.4, 133.4, 126.8, 113.9, 35.6,
11.7. HRMS calcd. for C8H9N3 (M+H)+: 147.0796; found:
147.0788.
Synthesis of N(6)Me-(2,6-aza)Ind
CH3I (8 mL) was added to a solution of (2,6-aza)Ind (180
mg,1.35 mmol) dissolved in toluene (20 mL), and the solution was
heated at reflux under N2 atmosphere for 6 h. After 6 h, the
precipitated material was filtered off. The white precipitate was
dissolved in 35% ammonia in water (100 mL) and extracted with
CH2Cl2. The organic layer was dried over MgSO4, filtered, and
evaporated to dryness to afford N(6)Me-(2,6-aza)Ind (125 mg,
63%). 1H NMR (400 MHz, CDCl3): δ 8.74 (s, 1H), 7.63 (d, J = 6.8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
13
Hz, 1H), 7.22 (d, J = 6.8 Hz, 1H), 4.19 (s, 1H), 2.70 (s, 1H). C
NMR (100 MHz, CDCl3) : δ 145.9, 142.1, 134.8, 125.1, 123.8,
116.0, 46.5, 11.8. HRMS calcd. for C8H9N3 (M+H)+: 147.0875;
found: 147.0869.
Spectroscopic Measurements
The steady-state absorption and emission spectra were
measured by a Hitachi U-3310 Spectrophotometer and an
Edinburgh FS920 Fluorimeter respectively, both of which had been
calibrated. In brief, nanosecond time-resolved experiments were
performed by using an Edinburgh FLS920 time-correlated single
photon-counting (TCSPC) system with a pulsed hydrogen-filled
lamp as the excitation source. Data were fitted with the sum of
exponential functions using a nonlinear least-squares procedure in
combination with a convolution method.
(26)Kwon, O.-H.; Lee, Y.-S.; Yoo, B. K.; Jang, D.-J. Angew. Chem. Int. Ed.
2006, 45, 415.
Supporting Information. Details of synthetic procedures,
characterization, pH titration, proton inventory and photophysical
measurements. This material is available free of charge via the Internet
at http://pubs.acs.org.” F
(27)Chapman, C. F.; Maroncelli, M. J. Phys. Chem. 1992, 96, 8430.
(28)Moog, R. S.; Maroncelli, M. J. Phys. Chem. 1991, 95, 10359.
(29)Mente, S.; Maroncelli, M. J. Phys. Chem. A 1998, 102, 3860.
(30)Hsieh, C.-C.; Chen, K.-Y.; Hsieh, W.-T.; Lai, C.-H.; Shen, J.-Y.; Jiang,
C.-M.; Duan, H.-S.; Chou, P.-T. ChemPhysChem 2008, 9, 2221.
(31)Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397.
(32)Hsieh, W.-T.; Hsieh, C.-C.; Lai, C.-H.; Cheng, Y.-M.; Ho, M.-L.;
Wang, K. K.; Lee, G.-H.; Chou, P.-T. ChemPhysChem 2008, 9, 293.
(33)Chen, Y.; Gai, F.; Petrich, J. W. J. Am. Chem. Soc. 1993, 115, 10158.
(34)Kwon, O.-H.; Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
E79.
The authors declare no competing financial interests.
(35)Kwon, O.-H.; Lee, Y.-S.; Park, H. J.; Kim, Y.; Jang, D.-J. Angew. Chem.
Int. Ed. 2004, 43, 5792.
(36)Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
P.-T. Chou thanks the Ministry of Science and Technology, Taiwan for
the financial support.
(1)Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19.
(2)Hsieh, C.-C.; Jiang, C.-M.; Chou, P.-T. Acc. Chem. Res. 2010, 43, 1364.
(3)Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-
Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. J. Am. Chem. Soc. 2011, 133,
17738.
(4)Demchenko, A. P.; Tang, K.-C.; Chou, P.-T. Chem. Soc. Rev. 2013, 42,
1379.
(5)Park, S.; Kwon, O.-H.; Kim, S.; Park, S.; Choi, M.-G.; Cha, M.; Park, S.
Y.; Jang, D.-J. J. Am. Chem. Soc. 2005, 127, 10070.
(6)Kwon, J. E.; Park, S. Y. Adv. Mater. 2011, 23, 3615.
(7)Padalkar, V. S.; Seki, S. Chem. Soc. Rev. 2016, 45, 169.
ACS Paragon Plus Environment