D
P. N. Chalikidi et al.
Letter
Synlett
O
O
References and Notes
O
Fe(II) + H2O
Me
– MeXt
CH2
H
CH3
(1) For selected recent reviews on synthesis and application of β-
keto sulfones, see: (a) Markitanov, Y. M.; Timoshenko, V. M.;
Shermolovich, Y. G. J. Sulfur Chem. 2013, 35, 188. (b) Pena, J.;
Moro, R. F.; Markos, I. S.; Diez, D. Curr. Org. Chem. 2014, 18,
2972. (c) Elattar, K. M.; Fekri, A.; Bayoumy, N. M.; Fadda, A. A.
Res. Chem. Intermed. 2017, 43, 4227.
1i
MeO
MeO
O•
A'
D
O
CH3
+ Fe(III)OH
(2) Kumar, A.; Sharma, S.; Tripathi, V. D.; Srivastava, S. Tetrahedron
2010, 66, 9445.
MeO
OH
(3) (a) Macro, J. L.; Fernandez, I.; Khira, N.; Fernandez, P.; Romero,
A. J. Org. Chem. 1995, 60, 6678. (b) Macro, J. L. J. Org. Chem. 1997,
62, 6575.
(4) Ihara, M.; Suzuki, S.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K.
Tetrahedron 1995, 51, 9873.
5 (88%)
Scheme 4 Transformation of xanthate 1i into 2-hydroxy-4-methoxy-
acetophenone (5)
O
H2O2
FeSO4·7H2O
(5) Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org. Chem. 2002, 67,
9182.
O
S
Hal
+
5 °C to r.t., 3 h
Me
Me
Me
(6) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 3142.
(7) Zhang, X.; Dai, W.; Wu, W.; Cao, S. Org. Lett. 2015, 17, 2708.
(8) Saraiva, M. T.; Costa, G. P.; Seus, N.; Schumacher, R. F.; Perin, G.;
Paixão, M. W.; Luque, R.; Alves, D. Org. Lett. 2015, 17, 6206.
(9) For selected examples, see: (a) Timoshenko, V. M.; Markitanov,
Y. M.; Salimov, Y. O.; Shermolovich, Y. G. Arkivoc 2014, (vi), 86.
(b) Pandey, G.; Vaitla, J. Org. Lett. 2015, 17, 4890. (c) Chang, M.-
Y.; Chen, Y.-H.; Cheng, Y.-C. Tetrahedron 2016, 72, 518. (d) Chan,
C.-K.; Chen, Y.-H.; Hsu, R.-T.; Chang, M.-Y. Tetrahedron 2017, 73,
46.
Br
6 (Hal = Br)
7 (Hal = I)
Br
O
O
O
S
+
O
O
Br
Br
3b
4b
Hal
Br
I
3b (%)
48
59
4b (%)
5
5
(10) Wolf, W. M. J. Mol. Struct. 1999, 474, 113.
(11) Curti, C.; Laget, M.; Carle, A. O.; Gellis, A.; Vanelle, P. Eur. J. Med.
Chem. 2007, 42, 880.
Scheme 5 Synthesis of β-keto sulfone 3b starting from halides 6 and
7. Reagents and conditions: 10 mmol of 6 or 7, 20 mmol of FeSO4·7Н2О,
20 mmol of H2O2, 40 mL of DMSO. Isolated yields after column chroma-
tography are given.
(12) (a) Xiang, J.; Ipek, M.; Suri, V.; Tam, M.; Xing, Y.; Huang, N.;
Zhang, Y.; Tobin, J.; Mansour, T. S.; McKew, J. Bioorg. Med. Chem.
2007, 15, 4396. (b) Spallarossa, A.; Caneva, C.; Caviglia, M.; Alfei,
S.; Butini, S.; Campiani, G.; Gemma, S.; Brindisi, M.; Zisterer, D.
M.; Bright, S. A.; Williams, C. D.; Crespan, E.; Maga, G.; Sanna,
G.; Delogu, I.; Collu, G.; Loddo, R. Eur. J. Med. Chem. 2015, 102,
648. (c) Sundermann, T.; Fabian, J.; Hanekamp, W.; Lehr, M.
Bioorg. Med. Chem. 2015, 23, 2579.
In conclusion, we have developed a new facile method
for the synthesis of β-keto sulfones employing xanthates
and Fenton’s reagent in DMSO.22 The reaction proceeds un-
(13) For selected examples, see: (a) Vennstra, G. E.; Zwaneburg, B.
Synthesis 1975, 519. (b) Suryakiran, N.; Reddy, T. S.; Ashalatha,
K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron Lett. 2006,
3853. (c) Kong, H. I.; Crichton, J. E.; Manthorpe, J. M. Tetrahedron
Lett. 2011, 52, 3714. (d) Pan, X.-J.; Gao, J.; Yuan, G.-Q. Tetrahe-
dron 2015, 71, 5525. (e) Shin, U. S.; Joo, S.-R.; Kim, S.-H. Bull. Kor.
Chem. Soc. 2016, 37, 1144.
der very mild conditions, providing
a cost-effective
straightforward approach to various β-keto sulfones in high
yields. A plausible mechanism has been proposed for this
transformation. We have also demonstrated that commer-
cially available phenacyl halides can be used as starting
compounds for this reaction.
(14) For selected examples, see: (a) Grosset, S. J.; Dubey, P. K.; Gill, G.
H.; Cameron, S. T.; Gardner, P. A. Can. J. Chem. 1984, 62, 798.
(b) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem.
2003, 68, 1443. (c) Pospíšil, J.; Sato, H. J. Org. Chem. 2011, 76,
2269. (d) Pospiil, J.; Robiette, R.; Sato, H.; Debrus, K. Org. Biomol.
Chem. 2012, 10, 1225.
(15) For selected examples, see: (a) Griffin, R. J.; Henderson, A.;
Curtin, N. J.; Echalier, A.; Endicott, J. A.; Hardcastle, I. R.; Newell,
D. R.; Noble, M. E. M.; Wang, L. Z.; Golding, B. T. J. Am. Chem. Soc.
2006, 128, 6012. (b) Bahrami, K.; Khodaei, M. M.; Arabi, M. S. J.
Org. Chem. 2010, 75, 6208. (c) Li, Q.-S.; Li, C.-Y.; Lu, X.; Zhang, H.;
Zhu, H.-L. Eur. J. Med. Chem. 2012, 50, 288.
(16) (a) Samakkanad, N.; Katrun, P.; Techajaroonjit, T.; Hlekhlai, S.;
Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.;
Kuhakarn, C. Synthesis 2012, 44, 1693. (b) Jiang, Y.; Loh, T.-P.
Chem. Sci. 2014, 5, 4939. (c) Wei, W.; Wen, J.; Yang, D.; Wu, M.;
You, J.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678.
Funding Information
The authors thank the Russian Foundation for Basic Research (Grant
No. 16-03-00807) for financial support.
)(
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E