3
acetylene 3a using 2 mol % of [Cu(phen)(PPh
3
)
2
]NO
3
as catalyst
assisted multicomponent coupling procedure in green media.
under microwave heating for 5 min to obtain the 3,5-
Further studies on the Cu(I) catalyzed synthesis of bioactive
heterocycles for biological applications are current pursuing in
our laboratory.
16
diphenylisoxazole 4a in 95 % yield as depicted in (Scheme 2).
1
Upon completion of the reaction, the H NMR spectrum of the
synthesized compound indicated the formation of pure 3,5-
disubstituted isoxazoles without forming any 3,4-disubstituted
4
. Acknowledgements
1
isoxazoles. The H NMR spectrum of 3,5-disubstituted isoxazole
contains a singlet at 6.88 which corresponds to the diagnostic
chemical shift of the 4H proton as compared to the chemical shift
of the 5H-isoxazole congener between 8 and 9 ppm. Encouraged
with this observation, we further investigated this telescopic
transformation with substituted aldehydes and alkynes. The
results are summarized in (Table 2).
The authors thank the Chancellor and Vice Chancellor of VIT
University for providing opportunity to carry out this study.
Further the authors wish to thank the management of this
university for providing seed money as research grant. Barnali
Maiti thanks DST- Govt of India for funding through DST-
SERB-YSS/2015/00450. The authors thank the reviewers for for
giving constructing comments for the overall improvement of the
manuscript.
Table 2. One-pot telescoped synthesis of 3,5-disubstituted
a,b
isoxazoles.
5
. References and notes
1. (a) Swinney, D. C.; Anthon, Nat. Rev. Drug Discovery 2011,
10, 507. (b) Azzarito, V.; Long, K.; Murphy, N. S.; Wilson, A. J.
Nat. Chem. 2013, 5, 161.
. (a) O’Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Chem.
2
Soc. Rev., 2012, 41, 4444. (b) Morrison, K.C.; Hergenrother, P. J.
Nat. Prod. Rep., 2014, 31, 6.
3
. (a) Ganem, B. Acc. Chem. Res. 2009, 42, ꢀꢁꢂ. (ꢃ) ꢄsteꢅez, ꢆ.;
Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39,
ꢀꢈ2. (c) ꢉsamꢃert, ꢊ.; Duꢋue, ꢌ. ꢌ. ꢍ.; ꢎlaꢋueꢅent, J. C.;
ꢏenisson, ꢐ.; Rodriguez, J.; Constantieux, T. Chem. Soc. Rev.
011, 40, 1347. (c) Shaabani, A.; Hooshmand, S. E. RSC Adv.,
016, 6, 58142.
ꢇ
ꢀ
ꢇ
2
2
4
2
5
6
. Kruithof, A.; Ruijter, E.; Orru. R. V. A. Curr. Org. Chem.,
011, 15, 204.
. Chanda, A.; Fokin. V. V. Chem. Rev. 2009, 109, 725.
. Isacson, O.; Brundin, P.; Kelly, P. A. T.; Gage, F. H.;
Björklund, A. Nature, 1984, 311, 458.
. (a) Neelarapu, R.; Holzle, D. L.; Velaparthi, S.; Bai, H.;
Brunsteiner, M.; Blond, S. Y.; Petukhov, P. A. J. Med. Chem.
011, 54, 4350. (b) Yu, L. F.; Tuckmantel, W.; Eaton, J. B.;
Caldarone, B.; Fedolak, A.; Hanania, T.; Brunner, D.; Lukas, R.
J.; Kozikowski, A. P. J. Med. Chem. 2012, 55, 812. (c) Miranda-
ꢊoꢅales, ꢏ.; Leańos-Miranda, B. E.; Vilchis-Pérez, M;
ꢍolǒrzano-Santos, F. Ann. Clin. Microbiol. Antimicrob., 2006, 5,
7
a
2
Reaction conditions: aldehydes (1 mmol), NH OH.HCl (1
mmol), NaOH (1.5 mmol), NCS (1 mmol), alkyne (1 mmol),
Cu(I) catalyst (2 mol%). Isolated yield
2
b
The overall reaction time is typically 12-20 min. The
corresponding highly regioselective 3,5-disubstituted isoxazoles
were obtained with excellent yields after a simple work-up
involving filtration of the catalyst, washing, and solvent
evaporation. Finally the crude products were purified by column
chromatography followed by spectroscopic characterization using
25. (d) Becker, A.; Grecksch, G.; Bernstein, H.-ꢏ.; Hȍllt, ꢆ.;
Bogerts, B. Psychopharmacology, 1999, 144, 333. (e) Neumann,
C.; Potts, G. O.; Ryan, W. T.; Stonner, F. W. J. Med. Chem.,
1
13
1970, 13, 948.
HNMR, C NMR, and mass spectroscopy (MS). We have
8. Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.; Simoni, D.
observed the substituent effects of both aldehydes and alkynes.
Aromatic aldehydes containing electron-withdrawing groups
reacted efficiently to obtain the corresponding isoxazoles in
excellent yields as compared to the electron-donating
substituents. The aromatic terminal alkynes containing electron-
withdrawing groups or electron-donating substituents have no
effect on the outcome of the reaction followed by hydroxy-, silyl-
Synthesis, 1987, 857.
. (a) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.;
9
Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem.
Soc., 2005, 127, 210. (b) Hansen, T. V.; Wu, P.; Fokin, V. V. J.
Org. Chem., 2005, 70, 7761.
10. (a) Waldo, J. P.; Larock, R. C. Org. Lett., 2005, 7, 5203. (b)
Cecchi, L.; De Sarlo, F.; Machetti, F. Eur. J. Org. Chem., 2006,
,
and ester-substituted alkynes to obtain the corresponding
4
2
2
852. (c) Tang, S.; He, J.; Sun, Y.; He, L.; She, X.; Org. Lett.,
009, 11, 3982. (d) Crossley, J. A.; Browne, D. L. J. Org. Chem.,
010, 75, 5351. (e) Hu, M.; He, X.; Niu, Z.; Yan, Z.; Zhou, F.;
isoxazoles as single regioisomers in good to high yields.
Shang, Y. Synthesis, 2014, 46, 510.
1. (a) Ahmed, M. S. M.; Kobayashi, K.; Mori, A. Org. Lett.,
3
. Conclusions
1
In summary, we have developed an efficient one-pot,
2005, 7, 4487. (b) Willy, B.; Rominger, F.; Müller, T. J. J.
Synthesis, 2008, 293. (c) Praveen, C.; Kalyanasundaram, A.;
Perumal, P. T. Synlett, 2010, 777. (d) Gayon, E.; Quinonero, O.;
Lemouzy, S.; Vrancken, E.; Campagne, J.-M. Org. Lett., 2011,
13, 6418. (e) Harigae, R.; Moriyama, K.; Togo, H.; J. Org.
Chem., 2014, 79, 2049. (f) Jeong, Y.; Kim, B.-I.; Lee, J. K.; Ryu,
J.-S. J. Org. Chem., 2014, 79, 6444.
telescoped approach for the synthesis of biologically interesting
disubstituted isoxazoles. The synergistic effect of microwave
irradiation and water as green solvent effectively accelerates the
reaction to proceed in short reaction times with excellent yields.
To the best of our knowledge, this procedure is the first example
for the synthesis of 3,5-disubstituted isoxazoles via microwave