Enantioselective C(sp3)-H Functionalization
Chin. J. Chem.
J. Am. Chem. Soc. 2014, 136, 6904-6907; (e) Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.;
Musaev, D. G.; Davies, H. M. L. Design of catalysts for site-selective and enantioselective functionali-
zation of non-activated primary C–H bonds. Nat. Chem. 2018, 10, 1048-1055; (f) Fu, J.; Ren, Z.; Bacsa,
J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–
H functionalization. Nature 2018, 564, 395-399; (g) Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.;
Musaev, D. G.; Davies, H. M. L. Site-selective and stereoselective functionalization of non-activated
tertiary C–H bonds. Nature 2017, 551, 609-613; (h) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.;
Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature
2016, 533, 230-234.
Ligands for Rh-Catalyzed Asymmetric Arylation of Cyclic Ketimines: Highly Enantioselective Construc-
tion of Tetrasubstituted Carbon Stereocenters. J. Am. Chem. Soc. 2013, 135, 971-974.
[8] (a) Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. Rhodium(I)-Catalyzed Asymmetric Carbene
Insertion into B–H Bonds: Highly Enantioselective Access to Functionalized Organoboranes. J. Am.
Chem. Soc. 2015, 137, 5268-5271; (b) Chen, D.; Zhu, D.-X.; Xu, M.-H. Rhodium(I)-Catalyzed Highly
Enantioselective Insertion of Carbenoid into Si–H: Efficient Access to Functional Chiral Silanes. J. Am.
Chem. Soc. 2016, 138, 1498-1501.
[9] (a) Nishimura, T.; Maeda, Y.; Hayashi, T. Asymmetric Cyclopropanation of Alkenes with Dimethyl
Diazomalonate Catalyzed by Chiral Diene–Rhodium Complexes. Angew. Chem. Int. Ed. 2010, 49,
7324-7327; (b) Guo, R.-T.; Zhang, Y.-L.; Tian, J.-J.; Zhu, K.-Y.; Wang, X.-C. Rhodium-Catalyzed ortho-
Selective Carbene C–H Insertion of Unprotected Phenols Directed by a Transient Oxonium Ylide In-
termediate. Org. Lett. 2020, 22, 908-913; (c) Yada, A.; Fujita, S.; Murakami, M. Enantioselective In-
sertion of a Carbenoid Carbon into a C–C Bond To Expand Cyclobutanols to Cyclopentanols. J. Am.
Chem. Soc. 2014, 136, 7217-7220; (d) Ma, X.; Jiang, J.; Lv, S.; Yao, W.; Yang, Y.; Liu, S.; Xia, F.; Hu, W.
An Ylide Transformation of Rhodium(I) Carbene: Enantioselective Three-Component Reaction
through Trapping of Rhodium(I)-Associated Ammonium Ylides by β-Nitroacrylates. Angew. Chem. Int.
Ed. 2014, 53, 13136-13139.
[4] (a) Liao, K.; Liu, W.; Niemeyer, Z. L.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Sigman, M. S.; Davies, H. M.
L. Site-Selective Carbene-Induced C–H Functionalization Catalyzed by Dirhodium Tetrakis(triarylcy-
clopropanecarboxylate) Complexes. ACS Catal. 2018, 8, 678-682; (b) Bedell, T. A.; Hone, G. A. B.;
Valette, D.; Yu, J.-Q.; Davies, H. M. L.; Sorensen, E. J. Rapid Construction of a Benzo-Fused Indoxamy-
cin Core Enabled by Site-Selective C−H Functionalizations. Angew. Chem. Int. Ed. 2016, 55, 8270-8274.
[5] (a) Suematsu, H.; Katsuki, T. Iridium(III) Catalyzed Diastereo- and Enantioselective C−H Bond Func-
tionalization. J. Am. Chem. Soc. 2009, 131, 14218-14219; (b) Wang, J.-C.; Xu, Z.-J.; Guo, Z.; Deng, Q.-
H.; Zhou, C.-Y.; Wan, X.-L.; Che, C.-M. Highly enantioselective intermolecular carbene insertion to C–
H and Si–H bonds catalyzed by a chiral iridium(iii) complex of a D4-symmetric Halterman porphyrin
ligand. Chem. Commun. 2012, 48, 4299-4301; (c) Owens, C. P.; Varela-Álvarez, A.; Boyarskikh, V.; Mu-
saev, D. G.; Davies, H. M. L.; Blakey, S. B. Iridium(iii)-bis(oxazolinyl)phenyl catalysts for enantioselec-
tive C–H functionalization. Chem. Sci. 2013, 4, 2590-2596.
[10] Davies, H. M. L.; Gregg, T. M. Asymmetric synthesis of (+)-indatraline using rhodium-catalyzed
C–H activation. Tetrahedron Lett. 2002, 43, 4951-4953.
[11] TLC indicates the formation of approximately 1:1 diastereomers.
[12] (a) Urbani, P.; Cascio, M. G.; Ramunno, A.; Bisogno, T.; Saturnino, C.; Marzo, V. D. Novel sterically
hindered cannabinoid CB1 receptor ligands. Bioorganic & Med. Chem. 2008, 16, 7510-7515; (b) De
Freitas, G. B. L.; da Silva, L. L.; Romeiro, N. C.; Fraga, C. A. M. Development of CoMFA and CoMSIA
models of affinity and selectivity for indole ligands of cannabinoid CB1 and CB2 receptors. Eur. J. Med.
Chem. 2009, 44, 2482-2496; (c) Brogi, S.; Corelli, F.; Di Marzo, V.; Ligresti, A.; Mugnaini, C.; Pasquini,
S.; Tafi, A. Three-dimensional quantitative structure–selectivity relationships analysis guided rational
design of a highly selective ligand for the cannabinoid receptor 2. Eur. J. Med. Chem. 2011, 46, 547-
555.
[6] (a) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Catalytic Asymmetric Synthesis of Diarylacetates
and 4,4-Diarylbutanoates. A Formal Asymmetric Synthesis of (+)-Sertraline. Org. Lett. 1999, 1, 233-
236; (b) Denton, J. R.; Davies, H. M. L. Enantioselective Reactions of Donor/Acceptor Carbenoids De-
rived from α-Aryl-α-Diazoketones. Org. Lett. 2009, 11, 787-790; (c) Müller, P.; Tohill, S. Intermolecular
Cyclopropanation versus CH Insertion in RhII-Catalyzed Carbenoid Reactions. Tetrahedron 2000, 56,
1725–1731.
[7] (a) Li, Y.; Xu, M.-H. Simple sulfur–olefins as new promising chiral ligands for asymmetric catalysis.
Chem. Commun. 2014, 50, 3771-3782; (b) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. Design of C2-
Symmetric Tetrahydropentalenes as New Chiral Diene Ligands for Highly Enantioselective Rh-Cata-
lyzed Arylation of N-Tosylarylimines with Arylboronic Acids. J. Am. Chem. Soc. 2007, 129, 5336-5337;
(c) Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Rhodium-Catalyzed, Highly Enantioselective 1,2-Addition of Aryl Bo-
ronic Acids to α-Ketoesters and α-Diketones Using Simple, Chiral Sulfur–Olefin Ligands. Angew. Chem.
Int. Ed. 2012, 51, 780-783; (d) Wang, H.; Jiang, T.; Xu, M.-H. Simple Branched Sulfur–Olefins as Chiral
(The following will be filled in by the editorial staff)
Manuscript received: XXXX, 2021
Manuscript revised: XXXX, 2021
Manuscript accepted: XXXX, 2021
Accepted manuscript online: XXXX, 2021
Version of record online: XXXX, 2021
Chin. J. Chem. 2021, 39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH