10 of 11
ROHANIYAN ET AL.
(t, J = 1.9 Hz, 1H, arom‐H); 13C NMR (75 MHz, DMSO‐
d6, ppm): δ = 26.66, 29.18, 32.44, 34.46, 40.67, 50.47,
112.82, 116.42, 117.68, 121.99, 123.03, 123.71, 125.70,
127.97, 129.13, 130.26, 130.87, 131.61, 135.32, 147.37,
147.75, 148.08, 164.92, 196.49; IR (KBr, cm−1) υ = 2955,
1649, 1529, 1467, 1353, 1224, 1086, 1026, 812, 752.
FESEM, TEM, AFM, particle size distribution, EDX anal-
ysis, EDX elemental mapping, and ICP‐OES. The new
functionalized GO performed well as a catalyst in one‐
pot synthesis of tetrahydrobenzo[a]xanthene‐11‐ones by
reaction of β‐naphthol with several aromatic or aliphatic
aldehydes and dimedone under solvent‐free conditions,
giving high yields of the products within short reaction
times. In addition, the catalyst is readily recovered by
simple filtration and can be reused for subsequent reac-
tions with no significant loss of its activity. Further appli-
cations of this new catalyst for other reaction systems are
currently under investigation.
3.6.4 | 12‐(4‐Methoxyphenyl)‐9,9‐dimethyl‐
8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐one
(4 k)
1H NMR (300 MHz, DMSO‐d6, ppm): δ = 0.91 (s, 3H,
CH3), 1.08 (s, 3H, CH3), 2.14 (d, J = 16.5 Hz, 1H, one
proton of diastereotopic protons in CH2), 2.35
(d, J = 16.5 Hz, 1H, one proton of diastereotopic protons
in CH2), 2.65 (ABq, Δν = 30.0 Hz, JAB = 17.3 Hz, 2H,
CH2), 3.64 (s, 3H, OCH3), 5.54 (s, 1H, pyran CH), 6.76
(d, J = 8.7 Hz, 2H, arom‐H), 7.20 (d, J = 8.7 Hz, 2H,
arom‐H), 7.41–7.54 (m, 3H, arom‐H), 7.90–7.95 (m, 2H,
arom‐H), 8.05 (d, J = 8.3 Hz, 1H, arom‐H); IR (KBr,
cm−1) υ = 2951, 1648, 1511, 1460, 1378, 1229, 1174,
1028, 832, 750.
ACKNOWLEDGEMENTS
This work was supported by Islamic Azad University,
Mashhad Branch (Iran) and Iran National Science
Foundation.
ORCID
Amir Khojastehnezhad
3.6.5 | 12‐(4‐Hydroxyphenyl)‐9,9‐dimethyl‐
8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐one
(4 l)
REFERENCES
[1] H. Sharghi, P. Shiri, M. Aberi, Beilstein J. Org. Chem. 2018, 14,
1H NMR (300 MHz, DMSO‐d6, ppm): δ = 0.91 (s, 3H,
CH3), 1.07 (s, 3H, CH3), 2.14 (d, J = 16.1 Hz, 1H, one
proton of diastereotopic protons in CH2), 2.34
(d, J = 16.1 Hz, 1H, one proton of diastereotopic protons
in CH2), 2.63 (ABq, Δν = 29.2 Hz, JAB = 17.4 Hz, 2H,
CH2), 5.48 (s, 1H, pyran CH), 6.58 (d, J = 8.5 Hz, 2H,
arom‐H), 7.09 (d, J = 8.5 Hz, 2H, arom‐H), 7.41–7.54
(m, 3H, arom‐H), 7.88–7.94 (m, 2H, arom‐H), 8.05
(d, J = 8.3 Hz, 1H, arom‐H), 9.20 (s, 1H, OH); 13C NMR
(75 MHz, DMSO‐d6, ppm): δ = 26.71, 29.34, 32.36,
33.64, 40.71, 50.65, 114.06, 115.34, 117.63, 118.27,
123.83, 125.36, 127.49, 128.98, 129.28, 129.52, 131.17,
131.55, 135.93, 147.57, 156.03, 163.88, 196.42; IR (KBr,
cm−1) υ = 3224, 2953, 1649, 1600, 1512, 1463, 1376,
1231, 1023, 822, 752.
2745.
[2] O. C. Compton, S. T. Nguyen, Small 2010, 6, 711.
[3] Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, S.
Zhang, Nano Lett. 2015, 15, 6974.
[4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
[5] A. Benvidi, M. Dehghan Tezerjani, A. Dehghani Firouzabadi,
M. Rezaeinasab, M. Mazloum Ardakani, A. H. Kianfar, M.
Sedighipoor, J. Chin. Chem. Soc. 2018, 65, 603.
[6] D. Cai, M. Song, J. Mater. Chem. 2010, 20, 7906.
[7] B. Tang, G. Hu, J. Power Sources 2012, 220, 95.
[8] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S.
Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee,
Adv. Funct. Mater. 2009, 19, 1987.
[9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A.
Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon
2007, 45, 1558.
[10] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80,
4 | CONCLUSIONS
1339.
[11] S. Kumari, A. Shekhar, D. D. Pathak, RSC Adv. 2014, 4, 61187.
[12] J. Li, H. Xu, Talanta 2017, 167, 623.
In summary, GO‐SB‐H2PMo, as a new SB functionalized
GO containing a phosphomolybdic counter‐anion, was
successfully prepared by grafting of APTS on GO nano-
sheets followed by condensation with benzil and finally
reaction with H3PMo. The structure of this new
nanomaterial was confirmed using FT‐IR spectroscopy,
[13] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc.
Rev. 2010, 39, 228.
[14] S. Verma, M. Aila, S. Kaul, S. L. Jain, RSC Adv. 2014, 4, 30598.
[15] H. Su, Z. Li, Q. Huo, J. Guan, Q. Kan, RSC Adv. 2014, 4, 9990.