10.1002/anie.202007206
Angewandte Chemie International Edition
Ballesteros, Adv. Synth. Catal. 2019, 361, 758; h) J. González, J.
Santamaría, A. L. Suárez-Sobrino, A. Ballesteros, Adv. Synth. Catal. 2016,
358, 1398.
We are grateful for financial support from the NNSFC (21772161
and 21622204), the NSFFJ (2019J02001), the President
Research Funds from Xiamen University (20720180036), the
Fundamental Research Funds for the Central Universities
(20720202008), NFFTBS (J1310024), PCSIRT, the Science &
Technology Cooperation Program of Xiamen (3502Z20183015),
the Opening Project of PCOSS, Xiamen University (201909), the
Bioinformatics Center of Nanjing Agricultural University and the
Start-up Research Fund of Nanjing Agricultural University (050-
804099). We also thank Mr. Zanbin Wei from Xiamen University
for assistance with X-ray crystallographic analysis.
[7] D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260.
[8] a) N. Li, T.-Y. Wang, L.-Z. Gong, L. Zhang, Chem. Eur. J. 2015, 21, 3585;
b) Z.-Y. Yan, Y. Xiao, L. Zhang, Angew. Chem. Int. Ed. 2012, 51, 8624; c)
Y. Xiao, L. Zhang, Org. Lett. 2012, 14, 4662; d) B. Lu, Y. Luo, L. Liu, L. Ye,
Y. Wang, L. Zhang, Angew. Chem. Int. Ed. 2011, 50, 8358;
[9] a) G. H. Lonca, C. Tejo, H. L. Chan, S. Chiba, F. Gagosz, Chem.
Commun. 2017, 53, 736; b) C. Gronnier, G. Boissonnat, F. Gagosz, Org.
Lett. 2013, 15, 4234; c) A. Wetzel, F. Gagosz, Angew. Chem. Int. Ed.
2011, 50, 7354; for the relevant use of 2H-azirines as nitrene transfer
reagents, see: d) A. Prechter, G. Henrion, P. F. dit Bel, F. Gagosz, Angew.
Chem. Int. Ed. 2014, 53, 4959.
[10] a) Y. Kawada, S. Ohmura, M. Kobayashi, W. Nojo, M. Kondo, Y. Matsuda,
J. Matsuoka, S. Inuki, S. Oishi, C. Wang, T. Saito, M. Uchiyama, T.
Suzuki, H. Ohno, Chem. Sci. 2018, 9, 8416; b) J. Matsuoka, Y. Matsuda,
Y. Kawada, S. Oishi, H. Ohno, Angew. Chem. Int. Ed. 2017, 56, 7444; c)
Y. Tokimizu, S. Oishi, N. Fujii, H. Ohno, Org. Lett. 2014, 16, 3138.
[11] For selected examples, see: a) X. Wu, L.-L. Zheng, L.-P. Zhao, C.-F. Zhu,
Y.-G. Li, Chem. Commun. 2019, 55, 14769; b) H. Su, M. Bao, C. Pei, W.
Hu, L. Qiu, X. Xu, Org. Chem. Front. 2019, 6, 2404; c) J. Cai, B. Wu, G.
Rong, C. Zhang, L. Qiu, X. Xu, Org. Lett. 2018, 20, 2733; d) W.-B. Shen,
Q. Sun, L. Li, X. Liu, B. Zhou, J.-Z. Yan, X. Lu, L.-W. Ye, Nat. Commun.
2017, 8, 1748; e) N. Li, X.-L. Lian, Y.-H. Li, T.-Y. Wang, Z.-Y. Han, L.
Zhang, L.-Z. Gong, Org. Lett. 2016, 18, 4178; f) S. K. Pawar, R. L. Sahani,
R.-S. Liu, Chem. Eur. J. 2015, 21, 10843; g) L. Zhu, Y. Yu, Z. Mao, X.
Huang, Org. Lett. 2015, 17, 30; for an Ag-catalyzed cyclization of azide-
tethered electron-deficient alkynes, see: h) H. Su, M. Bao, J. Huang, L.
Qiu, X. Xu, Adv. Synth. Catal. 2019, 361, 826.
Conflict of interest
The authors declare no conflict of interest.
Keywords: asymmetric catalysis · metal carbene · alkynes •
cyclization · heterocycles
[12] For gold-catalyzed intermolecular reaction of azides with ynamides via α-
imino gold carbenes, see: a) C. Shu, C.-H. Shen, Y.-H. Wang, L. Li, T. Li,
X. Lu, L.-W. Ye, Org. Lett. 2016, 18, 4630; b) C. Shu, Y.-H. Wang, C.-H.
Shen, P.-P. Ruan, X. Lu, L.-W. Ye, Org. Lett. 2016, 18, 3254; c) C. Shu,
Y.-H. Wang, B. Zhou, X.-L. Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem.
Soc. 2015, 137, 9567.
[1] For recent selected reviews on the generation of metal carbenes from
alkynes, see: a) L. Chen, K. Chen, S. Zhu, Chem 2018, 4, 1208; b) W. Zi,
F. D. Toste, Chem. Soc. Rev. 2016, 45, 4567; c) R. J. Harris, R. A.
Widenhoefer, Chem. Soc. Rev. 2016, 45, 4533; d) Z. Zheng, Z. Wang, Y.
Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448; e) M. Jia, S. Ma,
Angew. Chem. Int. Ed. 2016, 55, 9134; f) R. Dorel, A. M. Echavarren,
Chem. Rev. 2015, 115, 9028; g) Y. Wang, M. E. Muratore, A. M.
Echavarren, Chem. Eur. J. 2015, 21, 7332; h) D. Qian, J. Zhang, Chem.
Soc. Rev. 2015, 44, 677; i) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014,
47, 966; j) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953; k)
C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902; l) Y.-M.
Wang, A. D. Lackner, F. D. Toste, Acc. Chem. Res. 2014, 47, 889; m) L.
Zhang, Acc. Chem. Res. 2014, 47, 877; n) A. S. K. Hashmi, Acc. Chem.
Res. 2014, 47, 864.
[13] For recent reviews on ynamide reactivity, see: a) B. Zhou, T.-D. Tan, X.-Q.
Zhu, M. Shang, L.-W. Ye, ACS Catal. 2019, 9, 6393; b) G. Evano, C.
Theunissen, M. Lecomte, Aldrichimica Acta 2015, 48, 59; c) X.-N. Wang,
H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung,
Acc. Chem. Res. 2014, 47, 560; d) K. A. DeKorver, H. Li, A. G. Lohse, R.
Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064; e) G.
Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 49, 2840.
[14] For selected examples by our group, see: a) F.-L. Hong, Y.-B. Chen, S.-H.
Ye, G.-Y. Zhu, X.-Q. Zhu, X. Lu, R.-S. Liu, L.-W. Ye, J. Am. Chem. Soc.
2020, 142, 7618; b) Z.-S. Wang, Y.-B. Chen, H.-W. Zhang, Z. Sun, C. Zhu,
L.-W. Ye, J. Am. Chem. Soc. 2020, 142, 3636; c) F.-L. Hong, Z.-S. Wang,
D.-D. Wei, T.-Y. Zhai, G.-C. Deng, X. Lu, R.-S. Liu, L.-W. Ye, J. Am.
Chem. Soc. 2019, 141, 16961; d) Y. Xu, Q. Sun, T.-D. Tan, M.-Y. Yang, P.
Yuan, S.-Q. Wu, X. Lu, X. Hong, L.-W. Ye, Angew. Chem. Int. Ed. 2019,
58, 16252; e) B. Zhou, Y.-Q. Zhang, K. Zhang, M.-Y. Yang, Y.-B. Chen, Y.
Li, Q. Peng, S.-F. Zhu, Q.-L. Zhou, L.-W. Ye, Nat. Commun. 2019, 10,
3234; f) L. Li, X.-Q. Zhu, Y.-Q. Zhang, H.-Z. Bu, P. Yuan, J. Chen, J. Su,
X. Deng, L.-W. Ye, Chem. Sci. 2019, 10, 3123; g) B. Zhou, L. Li, X.-Q.
Zhu, J.-Z. Yan, Y.-L. Guo, L.-W. Ye, Angew. Chem. Int., Ed. 2017, 56,
4015; h) L. Li, X.-M. Chen, Z.-S. Wang, B. Zhou, X. Liu, X. Lu, L.-W. Ye,
ACS Catal. 2017, 7, 4004.
[15] Previous generations of α-imino copper carbenes are from diazo and
triazole precursors. For selected examples on the generation of α-imino
copper carbenes from diazos see: a) G. Sheng, S. Ma, S. Bai, J. Mao, P.
Lu, Y. Wang, Chem. Commun. 2018, 54, 1529; b) L. Wang, Y. Wu, Y.
Liu, H. Yang, X. Liu, J. Wang, X. Li, J. Jiang, Org. Lett. 2017, 19, 782; c)
C. Zhang, S. Chang, L. Qiu, X. Xu, Chem. Commun. 2016, 52, 12470; d)
E. Lourdusamy, L. Yao, C.-M. Park, Angew. Chem. Int. Ed. 2010, 49,
7963; for selected examples on the generation of α-imino copper
carbenes from triazoles see: e) R. Shen, C. Dong, J. Yang, L.-B. Han, Adv.
Synth. Catal. 2018, 360, 4252; f) V. Helan, A. V. Gulevich, V. Gevorgyan,
Chem. Sci. 2015, 6, 1928.
[2] For reviews, see: a) E. Aguilar, J. Santamaría, Org. Chem. Front. 2019, 6,
1513; b) X.-R. Song, Y.-F. Qiu, X.-Y. Liu, Y.-M. Liang, Org. Biomol. Chem.
2016, 14, 11317; c) P. W. Davies, M. Garzón, Asian J. Org. Chem. 2015,
4, 694.
[3] For selected examples, see: a) X. Tian, L. Song, K. Farshadfar, M.
Rudolph, F. Rominger, T. Oeser, A. Ariafard, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2020, 59, 471; b) Z. Zeng, H. Jin, M. Rudolph, F. Rominger,
A. S. K. Hashmi, Angew. Chem. Int. Ed. 2018, 57, 16549; c) Z. Zeng, H.
Jin, K. Sekine, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem.
Int. Ed. 2018, 57, 6935; d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688; e) H.
Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2016, 55, 794; f) B. D. Mokar, P. D. Jadhav, Y. B. Pandit,
R.-S. Liu, Chem. Sci. 2018, 9, 4488; g) S. S. Giri, R.-S. Liu, Chem. Sci.
2018, 9, 2991; h) P. D. Jadhav, X. Lu, R.-S. Liu, ACS Catal. 2018, 8, 9697;
i) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736; j) R. L.
Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026; k) W.-B. Shen,
X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew.
Chem. Int. Ed. 2017, 56, 605; l) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S.
Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265.
[4] For selected examples, see: a) M. Garzón, P. W. Davies, Org. Lett. 2014,
16, 4850; b) E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49,
8617; c) H.-H. Hung, Y.-C. Liao, R.-S. Liu, J. Org. Chem. 2013, 78, 7970;
d) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed.
2011, 50, 8931; e) C. Li, L. Zhang, Org. Lett. 2011, 13, 1738.
[5] For a review, see: a) X. Tian, L. Song, A. S. K. Hashmi, Chem. Eur. J.
2020, 26, 3197; for selected examples, see: b) X. Tian, L. Song, M.
Rudolph, F. Rominger, T. Oeser, A. S. K. Hashmi, Angew. Chem. Int. Ed.
2019, 58, 3589; c) X. Tian, L. Song, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Org. Lett. 2019, 21, 4327; d) X. Tian, L. Song, C. Han, C. Zhang,
Y. Wu, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2019, 21,
2937; e) X. Tian, L. Song, M. Rudolph, Q. Wang, X. Song, F. Rominger, A.
S. K. Hashmi, Org. Lett. 2019, 21, 1598.
[6] For the generation of α-imino metal carbenes via Rh-catalyzed
metallonitrene-initiated alkyne oxidation, see: a) N. Mace, A. R. Thornton,
S. B. Blakey, Angew. Chem. Int. Ed. 2013, 52, 5836; b) A. R. Thornton, V.
I. Martin, S. B. Blakey, J. Am. Chem. Soc. 2009, 131, 2434; c) A. R.
Thornton, S. B. Blakey, J. Am. Chem. Soc. 2008, 130, 5020; for relevant
Rh-catalyzed allene amination, see: d) A. H. Stoll, S. B. Blakey, Chem.
Sci. 2011, 2, 112; e) A. H. Stoll, S. B. Blakey, J. Am. Chem. Soc. 2010,
132, 2108; for relevant Rh-catalyzed asymmetric cyclization, see: f) K.
Hong, H. Su, C. Pei, X. Lv, W. Hu, L. Qiu, X. Xu, Org. Lett. 2019, 21, 3328;
for the use of 1-propargyl-1H-benzotriazoles as nitrene transfer reagents,
see: g) D. Allegue, J. González, S. Fernández, J. Santamaría, A.
[16] For details, see the Supporting Information (SI).
[17] Y. Liao, Q. Lu, G. Chen, Y. Yu, C. Li, X. Huang, ACS Catal. 2017, 7, 7529.
[18] CCDC 1970123 (2k), 1970124 (4m), 1974960 (6a), 2003044 (2av) and
1970125 ((-)-2aw) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
[19] For recent selected examples on the cyclization of N-propargyl ynamides,
see: a) B. Prabagar, R. K. Mallick, R. Prasad, V. Gandon, A. K. Sahoo,
Angew. Chem. Int. Ed. 2019, 58, 2365; b) S. Dutta, R. K. Mallick, R.
Prasad, V. Gandon, A. K. Sahoo, Angew. Chem. Int. Ed. 2019, 58, 2289.
[20] For this tricyclic skeleton found in a variety of bioactive compounds, see for
examples: a) B. Liu, X. Yuan, B. Xu, H. Zhang, R. Li, X. Wang, Z. Ge, R.
Li, Eur. J. Med. Chem. 2019, 170, 1; b) K. K. Deibler, R. K. Mishra, M. R.
Clutter, A. Antanasijevic, R. Bergan, M. Caffrey, K. A. Scheidt, ACS Chem.
Biol. 2017, 12, 1245; c) A. R. Saundane, R. Kalpana, Med. Chem. Res.
2015, 24, 1681; d) M. Zhang, D. Liu, B. Lu, PCT Int. Appl. WO
2014043296A1, 2014; e) G. Van Baelen, S. Hostyn, L. Dhooghe, P.
Tapolcsányi, P. Mátyus, G. Lemière, R. Dommisse, M. Kaiser, R. Brun, P.
Cos, L. Maes, G. Hajós, Z. Riedl, I. Nagy, B. U. W. Maes, L. Pieters, Biorg.
Med. Chem. 2009, 17, 7209; f) G. Van Baelen, G. L. F. Lemière, R. A.
Dommisse, B. U. W. Maes, ARKIVOC 2009, vi, 174; g) H.-H. Ha, J. S.
Kim, B. M. Kim, Bioorg. Med. Chem. Lett. 2008, 18, 653.
6
This article is protected by copyright. All rights reserved.