Di(n-propyl) sulfone (3h).45 The product was obtained as a
white solid (0.141 g, 94% yield). 1H NMR (400 MHz, CDCl3) δ
(ppm): 2.90–2.86 (m, 4H), 1.86–1.76 (m, 4H), 1.02 (t, J = 7.4
Hz, 6H). 13C NMR (100 MHz, CDCl3) δ (ppm): 54.2, 15.6,
13.0. EI-MS, m/z (%): 151.05 (22) [M+].
19 A. Bordoloi, A. Vinu and S. B. Halligudi, Chem. Commun., 2007, 4806–
4808.
20 I. Gamba, S. Palavicini, E. Monzani and L. Casella, Chem.–Eur. J., 2009,
15, 12932–12936.
21 J. Legros and C. Bolm, Angew. Chem., Int. Ed., 2003, 42, 5487–5489.
22 S. Hussain, S. K. Bharadwaj, R. Pandey and M. K. Chaudhuri,
Eur. J. Org. Chem., 2009, 3319–3322.
23 N. Fukuda and T. Ikemoto, J. Org. Chem., 2010, 75, 4629–4631.
24 K. Bahrami, M. M. Khodaei and M. S. Arabi, J. Org. Chem., 2010, 75,
6208–6213.
25 X. Y. Shi, X. Y. Han, W. J. Ma, J. F. Wei, J. Li, Q. Zhang and Z. G. Chen,
J. Mol. Catal. A: Chem., 2011, 341, 57–62.
26 M. Eissen, M. Strudthoff, S. Backhaus, C. Eismann, G. Oetken,
S. Kaling and D. Lenoir, J. Chem. Educ., 2011, 88, 284–291.
27 (a) J. D. Fields and P. J. Kropp, J. Org. Chem., 2000, 65, 5937–5941;
(b) K. S. Webb and V. Seneviratne, Tetrahedron Lett., 1995, 36, 2377–
2378.
28 (a) C. Bolm, A. S. Magnus and J. P. Hildebrand, Org. Lett., 2000, 2,
1173–1175; (b) M. Hirano, M. Oose and T. Morimoto, Bull. Chem. Soc.
Jpn., 1991, 64, 1046–1047.
Dimethyl sulfone (3i).49 The product was obtained as a white
solid (0.088 g, 93% yield). 1H NMR (400 MHz, CDCl3) δ
(ppm): 2.97 (s, 6H). 13C NMR (100 MHz, CDCl3) δ (ppm):
42.6. EI-MS, m/z (%): 94.00 (34) [M+].
2-Methanesulfonylbenzothiazole (3j).42 The product was
obtained as a white solid (0.188 g, 88% yield). 1H NMR
(400 MHz, CDCl3) δ (ppm): 8.20 (d, J = 8.3 Hz, 1H), 8.01 (d, J
= 7.8 Hz, 1H), 7.66–7.57 (m, 2H), 3.41 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ (ppm): 166.3, 152.4, 136.5, 128.1, 127.7,
125.3, 122.3, 42.4. EI-MS, m/z (%): 212.98 (72) [M+].
29 B. R. Travis, M. Sivakumar, G. O. Hollist and B. Borhan, Org. Lett.,
2003, 5, 1031–1034.
30 M. Uyanik, M. Akakura and K. Ishihara, J. Am. Chem. Soc., 2009, 131,
251–262.
Acknowledgements
31 (a) Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang and Y. Shi, J. Am. Chem.
Soc., 1997, 119, 11224–11235; (b) D. Yang, Acc. Chem. Res., 2004, 37,
497–505; (c) S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue and
R. G. Wilde, J. Org. Chem., 1995, 60, 1391–1407; (d) M. Frohn,
Z.-X. Wang and Y. Shi, J. Org. Chem., 1998, 63, 6425–6426;
(e) N. Hashimoto and A. Kanda, Org. Process Res. Dev., 2002, 6, 405–
406.
We are grateful to the National Natural Science Foundation of
China (No. 21172125), the “111” Project of Ministry of Edu-
cation of China (Project No. B06005), and the Committee of
Science and Technology of Tianjin for financial support.
32 (a) A. Chrobok, Tetrahedron, 2010, 66, 6212–6216; (b) M. E. Gonzalez-
Nunez, R. Mello, A. Olmos and G. Asensio, J. Org. Chem., 2005, 70,
10879–10882; (c) M. Renz and B. Meunier, Eur. J. Org. Chem., 1999,
1999, 737–750.
Notes and references
33 P. Liu, Y. G. Liu, E. L. M. Wong, S. Xiang and C. M. Che, Chem. Sci.,
2011, 2, 2187–2195.
34 (a) B. M. Trost and D. P. Curran, Tetrahedron Lett., 1981, 22, 1287–
1290; (b) K. S. Webb, Tetrahedron Lett., 1994, 35, 3457–3460;
(c) F. A. Davis, S. G. Lal and H. D. Durst, J. Org. Chem., 1988, 53,
5004–5007.
35 P. J. Kropp, G. W. Breton, J. D. Fields, J. C. Tung and B. R. Loomis, J.
Am. Chem. Soc., 2000, 122, 4280–4285.
36 A. R. Hajipour, S. E. Mallakpour and H. Adibi, J. Org. Chem., 2002, 67,
8666–8668.
1 (a) C.-J. Li and B. M. Trost, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
13197–13202; (b) P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39,
301–312.
2 (a) M. C. Carreno, Chem. Rev., 1995, 95, 1717–1760; (b) I. Fernandez
and N. Khiar, Chem. Rev., 2003, 103, 3651–3706; (c) E. Wojaczynska
and J. Wojaczynski, Chem. Rev., 2010, 110, 4303–4356; (d) K. A. Stingl
and S. B. Tsogoeva, Tetrahedron: Asymmetry, 2010, 21, 1055–1074.
3 A. M. Khenkin and R. Neumann, J. Am. Chem. Soc., 2002, 124, 4198–
4199.
4 H. Pellissier, Tetrahedron, 2006, 62, 5559–5601.
37 (a) C.-X. Miao, L.-N. He, J.-Q. Wang and J.-L. Wang, Adv. Synth. Catal.,
2009, 351, 2209–2216; (b) C.-X. Miao, J.-Q. Wang, B. Yu, W.-G. Cheng,
J. Sun, S. Chanfreau, L.-N. He and S.-J. Zhang, Chem. Commun., 2011,
47, 2697–2699; (c) J.-Q. Wang, L.-N. He and C.-X. Miao, Green Chem.,
2009, 11, 1013–1017; (d) B. Li, A.-H. Liu, L.-N. He, Z.-Z. Yang, J. Gao
and K.-H. Chen, Green Chem., 2012, 14, 130.
38 O. Ermer and C. Röbke, Helv. Chim. Acta, 2003, 86, 2908–2913.
39 (a) V. K. Aggarwal, C. Lopin and F. Sandrinelli, J. Am. Chem. Soc.,
2003, 125, 7596–7601; (b) V. K. Aggarwal and G. Y. Fang, Chem.
Commun., 2005, 3448–3450.
40 To a glass tube equipped with a magnetic stir bar, thioanisole (24.8 mg,
0.2 mmol), oxone (92.2 mg, 0.15 mmol), and solvent mixture (1 mL)
were added, and the mixture was stirred for 0.5 h at 85 °C; V(EtOH) : V
(H2O) = 0.40 : 0.60 mL, conversion: 66%, yield: 2a (10%), 3a (56%); V
(EtOH) : V(H2O) = 0.20 : 0.80 mL, conversion: 86%, yield: 2a (10%), 3a
(76%).
41 R. V. Kumar, K. V. S. R. S. Kumar and K. R. Gopal, J. Heterocycl.
Chem., 2005, 42, 153–156.
42 J. Pospisil and H. Sato, J. Org. Chem., 2011, 76, 2269–2272.
43 P. Hanson, R. A. A. J. Hendrickx and J. R. L. Smith, Org. Biomol.
Chem., 2008, 6, 745–761.
44 M. Kirihara, J. Yamamoto, T. Noguchi, A. Itou, S. Naito and Y. Hirai,
Tetrahedron, 2009, 65, 10477–10484.
45 P. Hanson, R. A. A. J. Hendrickxz and J. R. L. Smith, New J. Chem.,
2010, 34, 65–84.
5 (a) J. Legros, J. R. Dehli and C. Bolm, Adv. Synth. Catal., 2005, 347,
19–31; (b) J. E. Backvall, Modern oxidation methods, Wiley-VCH, Wein-
heim, Germany, 2010.
6 T. Chinnusamy and O. Reiser, ChemSusChem, 2010, 3, 1040–1042.
7 (a) F. Shi, M. K. Tse, H. M. Kaiser and M. Beller, Adv. Synth. Catal.,
2007, 349, 2425–2430; (b) R. Ricoux, M. Allard, R. Dubuc, C. Dupont,
J. D. Marechal and J. P. Mahy, Org. Biomol. Chem., 2009, 7, 3208–3211;
(c) C. B. Yang, H. Zhang, J. Liao, J. Zhu, J. G. Deng, Q. P. Jin and
B. Yu, Green Chem., 2009, 11, 1401–1405.
8 For a recent review, see: S. Kumar, S. Verma, S. L. Jain and B. Sain,
Tetrahedron Lett., 2011, 52, 3393–3396.
9 (a) J. N. Moorthy, K. Senapati and K. N. Parida, J. Org. Chem., 2010,
75, 8416–8421; (b) J. N. Moorthy, K. Senapati, K. N. Parida, S. Jhulki,
K. Sooraj and N. N. Nair, J. Org. Chem., 2011, 76, 9593–9601.
10 P. Kowalski, K. Mitka, K. Ossowska and Z. Kolarska, Tetrahedron, 2005,
61, 1933–1953.
11 (a) M. Hirano, S. Yakabe, J. H. Clark, H. Kudo and T. Morimoto, Synth.
Commun., 1996, 26, 1875–1886; (b) F. Voss, E. Herdtweck and T. Bach,
Chem. Commun., 2011, 47, 2137–2139.
12 B. M. Choudary, C. R. V. Reddy, B. V. Prakash, M. L. Kantam and
B. Sreedhar, Chem. Commun., 2003, 754–755.
13 M. Matteucci, G. Bhalay and M. Bradley, Org. Lett., 2003, 5, 235–238.
14 M. A. M. Capozzi, C. Centrone, G. Fracchiolla, F. Naso and
C. Cardellicchio, Eur. J. Org. Chem., 2011, 4327–4334.
15 S. L. Jain, B. S. Rana, B. Singh, A. K. Sinha, A. Bhaumik, M. Nandi and
B. Sain, Green Chem., 2010, 12, 374–377.
16 J. B. Arterburn and S. L. Nelson, J. Org. Chem., 1996, 61, 2260–2261.
17 X. T. Zhou, H. B. Ji, Z. Cheng, J. C. Xu, L. X. Pei and L. F. Wang,
Bioorg. Med. Chem. Lett., 2007, 17, 4650–4653.
46 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62,
7512–7515.
47 T. Itoh and T. Mase, Org. Lett., 2007, 9, 3687–3689.
48 W. Zhu and D. Ma, J. Org. Chem., 2005, 70, 2696–2700.
49 R. G. Chapman and J. C. Sherman, J. Org. Chem., 2000, 65, 513–516.
18 L. Xu, J. Cheng and M. L. Trudell, J. Org. Chem., 2003, 68, 5388–5391.
962 | Green Chem., 2012, 14, 957–962
This journal is © The Royal Society of Chemistry 2012