4
Tetrahedron
needs the assistance of a base (to remove HI and move the
Acknowledgments
equilibrium to the product side). According to the variable
reaction times with different substrates in this study, Sm(III) is
This work was financially supported by National Natural Science
Foundation of China (21202188 and 21532002), and Ministry of
Science and Technology of the People’s Republic of China
(SS2013AA090203).
3
thought to predominately coordinate with sp oxygens rather than
2
21
sp oxygens in the cyclic enolate A. Enolate A then transfers an
electron to iodine to form free radical species B, which
subsequently reacts with dioxygen and generates a peroxide free
radical C. The peroxide radical C couples with its precursor B to
form a symmetrical dimeric intermediate D. The dimer D
undergoes homolytic O-O cleavage, affording two molecules of
oxy-radical E. Eventually, the oxy-radical E abstracts a hydrogen
from previously in situ generated HI, furnishing the hydroxylated
product 2 and dropping off half mole of iodine (Figure 5).
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at xxxxxx.
References and notes
A possible alternative supramolecular mechanism is also
proposed to explain this type of C-H hydroxylation reaction
1
.
(a) Ciaffi, G.; Ravagnan, L.; Ricci, P. Antibiotics 1968, 6, 241-248;(b)
Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist. P. R. J.
Nat. Prod., 2000, 63, 79–85; (c) Pritchard, D. R.; Wilden, J. D.
Tetrahedron Lett. 2010, 51, 1819−1821; (d) Hu, X.; Xia, Q.; Zhao, Y.;
Zheng, Q.; Liu, Q.; Chen, L.; Zhang, Q. Chem. Pharm. Bull. 2014, 62,
(Figure 6). Dimerization of in situ generated enolate A happens
through exchanging one of the ligation oxygens of Sm(III),
providing a symmetrical head-to-tail macrocycle intermediate F.
To release the unfavorable repulsion of internal negative charges,
enolate F is then oxidized with iodine through a single-electron-
transfer (SET) process, giving a bis-Sm(III)-coordinated bi-
9
42-946; (e) Komoda, T.; Kishi, M.; Abe, Naoki; Sugiyama, Y.; Hirota,
A. Biosci. Biotech. Biochem. 2004, 68, 903-908.
(a) Christoffers, J.; Baro, A.; Werner, T. Adv. Synth. Catal. 2004, 346,
2
.
1
43−151; (b) Rose, C. A.; Gundala, S.; Fagan, C.-L.; Franz, J. F.;
22,23
radical intermediate G.
However, these two radicals in G is
Connon, S. J.; Zeitler, K. Chem. Sci. 2012, 3, 735−740; (c) Kanai, N.;
Nakayama, H.; Tada, N.; Itoh, A. Org. Lett. 2010, 12, 1948−1951.
too far away or sterically crowded to approach each other, and
molecular oxygen perfectly serves as a proper bridge between the
two radicals through its coordination with two Sm(III) in the
macrocyclic intermediate H. Unlike the stepwise formation of D
3. (a) Smith, A. M. R.; Billen, D.; Hii, K. K. Chem. Comm. 2009, 26, 3925-
3
2
927; (b) Baidya, M.; Griffin, K. A.; Yamamoto, H. J. Am. Chem. Soc.
012, 134, 18566−18569; (c) Cai, Y. C.; Lian, M. M.; Li, Z.; Meng, Q.
W. Tetrahedron 2012, 68, 7973−7977;(d) Lian, M. M.; Li, Z.; Cai, Y.
C.; Meng, Q. W.; Gao, Z. X. Chem. Asian J. 2012, 7, 2019−2023; (e)
Yao, H. J.; Lian, M. M.; Li, Z.; Wang, Y. K.; Meng, Q. W. J. Org.
Chem. 2012, 77, 9601−9608; (f) De Fusco, C.; Meninno, S.; Tedesco,
C.; Lattanzi, A. Org. Biomol. Chem. 2013, 11, 896−899; (g) Zou, L. W.;
Wang, B. M.; Mu, H. F.; Zhang, H. R.; Song, Y. M.; Qu, J. P. Org. Lett.
(Figure 5), a symmetrical dimeric peroixde I could be provided
by direct reaction of G/H with dioxygen simultaneously.
Eventually, the O-O bond cleavage of dimer I is carried out by
reaction with previously produced HI, affording two molecules
3g
3 2
of product 2 and regenerating both two catalysts SmI and I .
2
013, 15, 3106−3109; (h) Wang, Y.; Xiong, T.; Zhao, J.; Meng, Q.
Synlett, 2014, 25, 2155-2160; (i) Odagi, M., Furukori, K., Nagasawa, K.
J. Am. Chem. Soc. 2015, 137, 1909−1915.
4
5
.
.
Schultz, A. G.; Holoboski, M. A. Tetrahedron Lett. 1993, 34,
3
021−3024.
(a) Adam, W.; Smerz, A. K. Tetrahedron 1996, 52, 5799−5804; (bꢀ
Acocella, ꢁ. ꢂ.; ꢁancheꢃo, O. G.; Bella, M.; Jørgensen, K. A. J. Org.
Chem. 2004, 69, 8165−8167; (c) Li, D.; Schröder, K.; Bitterlich, B.;
Tse, M. K.; Beller, M. Tetrahedron Lett. 2008, 49, 5976−5979; (d) Lian,
M.; Li, Z.; Du, J.; Meng, Q.; Gao, Z. Eur. J. Org. Chem. 2010,
6
525−6530; (e) Smith, A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen,
D.; Hii, K. K. J. Org. Chem. 2010, 75, 3085−3096.
6
.
Andriamialisoa, R.; Langlois, N.; Langlois, Y. Tetrahedron Lett. 1985,
2
6, 3563−3566.
7
8
.
.
Duschek, A.; Kirsch, S. F. Chem. Eur. J. 2009, 15, 10713−10717.
(a) Christoffers, J. J. Org. Chem. 1999, 64, 7668−7669; (bꢀ ꢄamarꢅue,
ꢄ.; ꢁꢆou, A.; Brun, P. Can. J. Chem. 2000, 78, 128− 132.
9
.
(a) Baucherel, X.; Levoirier, E.; Uziel, J.; Juge, S. Tetrahedron Lett.
2
000, 41, 1385−1387; (b) Gans, P.; Hamelin, O.; Sounier, R.; Ayala, I.;
Boisbouvier, J. Angew. Chem., Int. Ed. 2010, 49, 1958-1962.
0. (a) Watanabe, T.; Ishikawa, T. Tetrahedron Lett. 1999, 40, 7795−7798;
b) Liang, Y.; Jiao, N. Angew. Chem., Int. Ed., 2014, 53, 548-552;
1. (a) Christoffers, J.; Werner, T. Synlett 2002, 119−121; (b) Christoffers,
J.; Werner, T.; Unger, S.; Frey, W. Eur. J. Org. Chem. 2003, 425−431;
1
1
(
(
c) Christoffers, J.; Kauf, T.; Werner, T.; Rossle, M. Eur. J. Org. Chem.
2
006, 2601−2608; (d) Rossle, M.; Christoffers, J. Tetrahedron 2009, 65,
1
0941−10944.
1
1
2. (a) Monguchi, Y.; Takahashi, T.; Iida, Y.; Fujiwara, Y.; Inagaki, Y.;
Maegawa, T.; Sajiki, H. Synlett 2008, 2291−2294; (b) Chuang, G. J.;
Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 1760−1762.
3. Miao, C.; Wang, Y.; Xing, M.; Sun, X. J. Org. Chem. 2013, 78,
1
1584−11589.
14. Yu, J.; Cui, J.; Zhang, C. Eur. J. Org. Chem. 2010, 7020-7026.
5. Elizabeth, M. X.; Spyros, S.; Maria T.; Dimitra H. L. J. Org. Chem.,
009, 74, 7315–7321.
16. Yin, C.; Cao, W.; Lin, L.; Liu, X.; Feng, X. Adv. Synth. Catal. 2013,
55, 1924 –1930.
7. Pan, C.; Zeng, X.; Guan, Y.; Jiang, X.; Li, L.; Zhang, H. Synlett 2011,
25-429.
Figure 6. An alternative possible supramolecular mechanism.
1
In summary, we have developed a new aerobic hydroxylation of
β-keto esters and amides by co-catalysis of SmI and I under
3 2
mild base-free conditions in this work. Possible mechanisms
were proposed to explain the crucial catalytic roles of Sm(III)
2
and I based on experimental evidences. This newly developed
method, using air as the clean oxidant, not only presents wide
applicability and good functional group tolerance, but also shows
great advantages of high-yielding, economic green process and
ease of operation. We believe it is valuable in future organic
synthesis and helpful to understand the unknown catalytic
capability of samarium(III).
2
3
1
4
1
1
8. Miyamura, H.; Kobayashi, S. Chem. Lett. 2012, 41, 976-978.
9. Haque, A.; Nishino, H. J. Heterocycl. Chem. 2014, 51, 579-585.
20. Yang, D.; Yan, Y.-L.; Lui, B. J. Org. Chem. 2002, 67, 7429−74331.
21. (a) Molecular catalysis of rare-earth elements, edited by P. W. Roesky,
Springer-Verlag Berlin Heidelberg, 2010; (b) Rare earth coordination
chemistry: fundamentals and applications, edited by C. Huang, John
Wiley & Sons (Asia) Pte Ltd, Singapore, 2010.