M. De Nisco et al. / Carbohydrate Research 356 (2012) 273–277
277
C27H38N2O6Si (514.25): C, 63.01; H, 7.44; N, 5.44. Found: C, 62.98;
H, 7.41; N, 5.43.
Università di Napoli Federico II. Varian Inova 500 MHz NMR instru-
ment is property of Consorzio INCA.
1H NMR (CD3OD): d 1.05 (s, 9H, CH3-t-butyl), 1.93–2.05 (m, 2H,
H-40), 2.11 (m, 1H, Ha-30), 2.36 (m, 1H, Hb-30), 2.98 (m, 1H, H-5),
3.34–3.42 (m, 4H, H-3, H-4, H-50), 3.61 (dd, J 11.6, J 4.7 Hz, 1H,
Ha-6), 3.70 (dd, J 11.6, J 2.8 Hz, 1H, Hb-6), 3.81 (dt, J 7.9, J 1.9 Hz,
1H, H-2), 3.99 (m, 1H. H-20), 4.67 (d, J 8.4 Hz, 1H, H-1), 7.28–7.50
(m, 6H, H-arom), 7.61–7.77 (m, 4H, H-arom).
Supplementary data
Supplementary data (1H and 13C spectra, HPLC conditions and
area graphs) associated with this article can be found, in the online
13C NMR (CD3OD): d 24.9 (C-40), 27.4 (C-t-butyl), 31.3 (C-30),
47.6 (C-50), 59.8 (C-2), 61.2 (C-20), 62.6 (C-6), 72.2 (C-4), 75.7 (C-
3), 77.8 (C-5), 97.4 (C-1), 128.6, 131.1, 134.7, 137.2 (C-arom),
169.8 (CO).
References
1. (a) Wu, X.; Jiang, Z.; Shen, H.-M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812–816;
(b) Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem. Eur. J.
2006, 12, 5383–5397; (c) Ender, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed.
Engl. 1971, 10, 496–497.
HRMS-TOF Calcd for C27H38N2O6Si [M+Na+]: 537.6742. Found:
537.6744.
2. (a) Mase, N.; Barbas, C. F., III Org. Biomol. Chem. 2010, 8, 4043–4050; (b)
Takayama, S.; McGarvey, G. J.; Wong, C.-H. Chem. Soc. Rev. 1997, 26, 407–415;
(c) Fessner, W.-D. In Stereoselective Biocatalysis; Patel, R. N., editor. New York:
Marcel Dekker Inc., 2000; pp 239–265.; (d) Rankin, K. N.; Gauld, J. W.; Boyd, R.
J. J. Phys. Chem. A 2002, 106, 5155–5159; (e) Córdova, A.; Notz, W.; Barbas, C. F.,
III Chem. Commun. 2002, 3024–3025.
3. (a) Movassaghi, M.; Jacobsen, E. N. Science 2002, 298, 1904–1905; (b) List, B.;
Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395–2396; (c) Notz,
W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386–7387.
4. (a) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. Angew. Chem., Int. Ed. 2010, 49,
4997–5003; (b) Zhu, X.; Tanaka, F.; Lerner, R. A.; Barbas, C. F., III; Wilson, I. A. J.
Am. Chem. Soc. 2009, 131, 18206–18207; (c) Wang, B.; Chen, G.-H.; Liu, L.-Y.;
Chang, W.-X.; Li, J. Adv. Synth. Catal. 2009, 351, 2441–2448; (d) Mukherjee, S.;
Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–5569; (e) Seebach,
D.; Beck, A. K.; Badine, D. M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A.
M.; Hobi, R.; Prikoszovich, W.; Linder, B. Helv. Chim. Acta 2007, 90, 425–471; (f)
Hayashi, Y.; Aratake, S.; Okano, T.; Takahashi, J.; Sumiya, T.; Shoji, M. Angew.
Chem., Int. Ed. 2006, 45, 5527–5529; (g) Saito, S.; Yamamoto, H. Acc. Chem. Res.
2004, 37, 570–579; (h) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem. Res.
2004, 37, 580–591.
5. (a) Singh Chimni, S.; Mahajana, D.; Babub, V. V. S. Tetrahedron Lett. 2005, 46,
5617–5619; (b) Wu, Y.-S.; Shao, W.-Y.; Zheng, C.-Q.; Huang, Z.-L.; Cai, J.; Deng,
Q.-Y. Helv. Chim. Acta 2004, 87, 1377–1384; (c) Yi-Yuan Peng, Y.-Y.; Ding, O.-P.;
Li, Z.; Wang, P. G.; Cheng, J.-P. Tetrahedron Lett. 2003, 44, 3871–3875.
6. (a) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302–6337; (b) Lindström,
U. M. Chem. Rev. 2002, 102, 2751–2772.
1.8. General procedure for cyclohexanone/miscellaneous
benzaldehydes aldol reactions catalyzed by 1
Into an 8 mL Wheaton clear glass/screw cap vial, solid 1 (7.7 mg,
1.5 ꢀ 10ꢁ2 mmol) suspended in brine (or THF) (1 mL), cyclohexa-
none (3.0 mmol), and the aldehyde under investigation (0.75 mmol)
were poured in sequence. The mixture was vigorously stirred in the
stoppered vial at the chosen temperature/time (cf. Tables 1 and 2).
After quenching by 20% aq NH4Cl (4 mL) and extraction with Et2O
(3 ꢀ 5 mL), the organic layers were washed with brine and dried
(Na2SO4). The combined water extracts containing salts and most
of the recovered catalyst were freeze-dried and put aside. Evapora-
tion of the solvents under reduced pressure gave a crude residue
that was adsorbed on a preparative layer plate eluting twice with
hexane/EtOAc (7:3) to get residual starting aldehyde and anti plus
syn couples. The anti:syn ratio was determined by 500 MHz 1H
NMR. The anti ee was determined by HPLC on chiral column (Daicel,
Chiralpak, IC).
All the experiments were duplicated.
7. (a) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33–57;
(b) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed.
2008, 47, 6138–6171.
8. (a) Lu, A.; Gao, P.; Wu, Y.; Wang, Y.; Zhou, Z.; Tang, C. Org. Biomol. Chem. 2009, 7,
3141–3147; (b) Tsutsui, A.; Takeda, H.; Kimura, M.; Fujimoto, T.; Machinami, T.
Tetrahedron Lett. 2007, 48, 5213–5217.
9. Zhu, X.; Tanaka, F.; Hu, Y.; Heine, A.; Fuller, R.; Zhong, G.; Olson, A. J.; Lerner, R.
A., ; Barbas, C. F., III; Wilson, I. A. J. Mol. Biol. 2004, 343, 1269–1280. and
references cited therein.
10. (a) Maya, V.; Raj, M.; Singh, V. K. Org. Lett. 2007, 9, 2593–2595; (b) Aratake, S.;
Itoh, T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Chem. Eur. J.
2007, 13, 10246–10256; (c) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.;
Urushima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958–961; (d) Mase, N.;
Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III J. Am.
Chem. Soc. 2006, 128, 734–735.
11. Singh, N.; Pandey, J.; Tripathi, R. P. Catal. Commun. 2008, 9, 743–746.
12. Giacalone, F.; Gruttadauria, M.; Lo Meo, P.; Riela, S.; Noto, R. Adv. Synth. Catal.
2008, 350, 2747–2760.
13. (a) Raja, M.; Singh, V. K. Chem. Commun. 2009, 6687–6703; (b) Almaßsi, D.;
Alonso, D. A.; Balaguer, A.-N.; Nájera, C. Adv. Synth. Catal. 2009, 351,
1123–1131.
14. (a) Ni, N.; El-Sayed, M. M.; Sanghvi, T.; Yalkowsky, S. H. J. Pharm. Sci. 2000, 89,
1620–1625; (b) Breslow, R. Acc. Chem. Res. 2004, 37, 471–478.
15. (a) Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2008,
10, 337–340; (b) Font, D.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2006, 8,
4653–4655.
16. In our opinion, this might explain the absolute lack of racemization of the aldol
species even under critical reaction conditions (e.g., 48 h, 2 mol %, 25°) (see
Supplementary data).
The solid coming from freeze-dried water extracts was poured
onto a short silica gel column and eluted with CHCl3/MeOH (8:2).
The crude organic product thus obtained was then purified by pre-
parative HPLC, as reported for the isolation of 1. Recovery range:
72–89% (when 2 mol % used, cf. Table 3).
1.9. Racemization assessment of the enantiomeric anti aldols 2
Into an 8 mL Wheaton clear glass/screw cap vial, solid 1 (2.6 mg,
5 ꢀ 10ꢁ3 mmol) and an authentic mixture (98:2; 2.5 mmol) of the
anti enantiomeric aldols, coming from the reaction of cyclohexa-
none and 4-nitrobenzaldehyde, were suspended in brine (1 mL).
The mixture was vigorously stirred in the stoppered vial at 25 °C
for 48 h. After extraction with Et2O (3 ꢀ 5 mL) of the crude reaction
mixture, the organic layers were washed with brine and dried
(Na2SO4). The combined water extracts containing salts and most
of the recovered catalyst were freeze-dried and put aside. Evapora-
tion of the solvents under reduced pressure gave a crude residue
that was analyzed by HPLC on chiral column (Daicel, Chiralpak,
IC). The mixture turned out to be unchanged (98:2).
Acknowledgments
17. (a) Paradowska, J.; Stodulski, M.; Jacek, M. Angew. Chem., Int. Ed. 2009, 48,
4288–4297; (b) Brogan, A. P.; Dickerson, T. J.; Janda, K. D. Angew. Chem., Int. Ed.
2006, 45, 8100–8102; (c) Hayashi, Y. Angew. Chem., Int. Ed. 2006, 45, 8103–
8104.
18. (a) Schultz, M.; Kunz, H. Tetrahedron: Asymmetry 1993, 4, 1205–1220; (b)
Boulanger, P.; Jouineau, M.; Bouammali, B.; Lafont, D.; Descotes, G. Carbohydr.
Res. 1990, 202, 151–164.
The authors are gratefully indebted to Professor S. Hanessian for his
advice and the helpful discussions. They also thank Professor Y. Hay-
ashi for his precious hints. 1H and 13C NMR spectra were performed
at Centro Interdipartimentale di Metodologie Chimico-Fisiche,