RSC Medicinal Chemistry
Research Article
employed,23 and the results compared with a control cell line
expressing neither MDR1 ortholog (MDCKcMDR1-ko).
Compounds 4 and 6, as well as 12b included as negative
control, were identified as hMDR1 substrates (ER > 20) with
low permeability (Papp < 60 × 10−6 cm s−1), predicting poor
BBB permeability in vivo. On the contrary, compound 11 was
no hMDR1 substrate (ER ∼ 1) and showed a Papp comparable
to PQR30919 and PQR620,10 which are known brain penetrant
PI3K and/or mTOR inhibitors (Fig. 3).
7 Z. Jin, H. Niu, X. Wang, L. Zhang, Q. Wang and A. Yang,
Oncotarget, 2017, 8, 58469–58479.
8 E. K. Slotkin, P. P. Patwardhan, S. D. Vasudeva, E. de
Stanchina, W. D. Tap and G. K. Schwartz, Mol. Cancer Ther.,
2015, 14, 395–406.
9 K. G. Pike, K. Malagu, M. G. Hummersone, K. A. Menear,
H. M. Duggan, S. Gomez, N. M. Martin, L. Ruston, S. L. Pass
and M. Pass, Bioorg. Med. Chem. Lett., 2013, 23, 1212–1216.
10 D. Rageot, T. Bohnacker, A. Melone, J. B. Langlois, C.
Borsari, P. Hillmann, A. M. Sele, F. Beaufils, M. Zvelebil, P.
Hebeisen, W. Loscher, J. Burke, D. Fabbro and M. P.
Wymann, J. Med. Chem., 2018, 61, 10084–10105.
Conclusion
In summary, we have identified 3-CF3-substituted pyridine,
thiazole and 1,3,4-thiadiazole as unexplored heteroaromatic
rings for mTOR inhibitors providing an exquisite mTOR
selectivity. We have reported the first tricyclic pyrimido-
pyrrolo-oxazine derivative showing MDCK-based BBB
permeability. Altogether, the good in vitro/cellular potency,
and the predicted brain penetration qualify 11 as second-
generation tricyclic pyrimido-pyrrolo-oxazine with potential
application in the treatment of CNS disorders.
11 C. Borsari, E. Keles, D. Rageot, A. Treyer, T. Bohnacker, L.
Bissegger, M. De Pascale, A. Melone, R. Sriramaratnam, F.
Beaufils, M. Hamburger, P. Hebeisen, W. Löscher, D.
Fabbro, P. Hillmann and M. P. Wymann, J. Med. Chem.,
2020, 63(22), 13595–13617.
12 S. Bonazzi, C. P. Goold, A. Gray, N. M. Thomsen, J. Nunez,
R. G. Karki, A. Gorde, J. D. Biag, H. A. Malik, Y. Sun, G.
Liang, D. Lubicka, S. Salas, N. Labbe-Giguere, E. P. Keaney,
S. McTighe, S. Liu, L. Deng, G. Piizzi, F. Lombardo, D.
Burdette, J.-C. Dodart, C. J. Wilson, S. Peukert, D. Curtis,
L. G. Hamann and L. O. Murphy, J. Med. Chem., 2020, 63,
1068–1083.
Conflicts of interest
PH is a past employee of PIQUR Therapeutics AG, Basel; and
PH and MPW are shareholders of PIQUR Therapeutics AG.
13 V. Cmiljanovic, P. Hebeisen, E. Jackson, F. Beaufils, T.
Bohnacker and M. P. Wymann, WO2015049369, 2015.
14 C. Borsari, D. Rageot, A. Dall'Asen, T. Bohnacker, A. Melone,
A. M. Sele, E. Jackson, J.-B. Langlois, F. Beaufils, P.
Hebeisen, D. Fabbro, P. Hillmann and M. P. Wymann,
J. Med. Chem., 2019, 62, 8609–8630.
15 N. A. Meanwell, J. Med. Chem., 2011, 54, 2529–2591.
16 J. J. Danon, T. A. Reekie and M. Kassiou, Trends Chem.,
2019, 1, 612–624.
17 J. F. Rousseau, I. Chekroun, V. Ferey and J. R. Labrosse, Org.
Process Res. Dev., 2015, 19, 506–513.
18 P. Hebeisen, A. Alker and M. Buerkler, Heterocycles, 2012, 85,
65–72.
Acknowledgements
This work was supported by the Innosuisse grant 37213.1 IP-LS,
EU Horizon 2020, ITN 675392 – Phd; the Novartis Foundation
for medical-biological Research grant 14B095; the Swiss
Commission for Technology and Innovation (CTI) by PFLS-LS
grant 17241.1; the Stiftung für Krebsbekämpfung grant 341, the
Swiss National Science Foundation grant 310030_189065 to
MPW. We thank D. Rageot, F. Beaufils, J. B. Langlois, A.
Dall'Asen and E. Teillet for advice, discussions and contributions
to synthetic efforts. A. T. and M. H. thank P. Artursson's lab
(Uppsala University, Sweden) for providing the MDCK cells.
19 F. Beaufils, N. Cmiljanovic, V. Cmiljanovic, T. Bohnacker, A.
Melone, R. Marone, E. Jackson, X. Zhang, A. Sele, C. Borsari,
J. Mestan, P. Hebeisen, P. Hillmann, B. Giese, M. Zvelebil, D.
Fabbro, R. L. Williams, D. Rageot and M. P. Wymann,
J. Med. Chem., 2017, 60, 7524–7538.
References
1 M. P. Wymann and R. Schneiter, Nat. Rev. Mol. Cell Biol.,
2008, 9, 162–176.
2 D. D. Sarbassov, D. A. Guertin, S. M. Ali and D. M. Sabatini,
Science, 2005, 307, 1098–1101.
20 C. Borsari, D. Rageot, F. Beaufils, T. Bohnacker, E. Keles, I.
Buslov, A. Melone, A. M. Sele, P. Hebeisen, D. Fabbro, P.
Hillmann and M. P. Wymann, ACS Med. Chem. Lett.,
2019, 10, 1473–1479.
3 M. P. Wymann and R. Marone, Curr. Opin. Cell Biol.,
2005, 17, 141–149.
4 Z. Z. Chong, Y. C. Shang, S. Wang and K. Maiese, Future
Neurol., 2012, 7, 733–748.
5 L. Lechuga and D. N. Franz, Expert Rev. Neurother., 2019, 19,
913–925.
6 C. Brandt, P. Hillmann, A. Noack, K. Römermann, L. A.
Öhler, D. Rageot, F. Beaufils, A. Melone, A. M. Sele, M. P.
Wymann, D. Fabbro and W. Löscher, Neuropharmacology,
2018, 140, 107–120.
21 D. Rageot, T. Bohnacker, E. Keles, J. A. McPhail, R. M.
Hoffmann, A. Melone, C. Borsari, R. Sriramaratnam, A. M.
Sele, F. Beaufils, P. Hebeisen, D. Fabbro, P. Hillmann, J. E.
Burke and M. P. Wymann, J. Med. Chem., 2019, 62,
6241–6261.
22 H. Yang, D. G. Rudge, J. D. Koos, B. Vaidialingam, H. J. Yang
and N. P. Pavletich, Nature, 2013, 497, 217–223.
23 M. Karlgren, I. Simoff, M. Backlund, C. Wegler, M. Keiser, N.
Handin, J. Müller, P. Lundquist, A. C. Jareborg, S. Oswald
and P. Artursson, J. Pharm. Sci., 2017, 106, 2909–2913.
This journal is © The Royal Society of Chemistry 2021
RSC Med. Chem., 2021, 12, 579–583 | 583