underwent coupling and afforded the corresponding product
in excellent yields in the presence of a Pd NCs catalyst.
In conclusion, we have demonstrated a method for solution
synthesis of Pd NCs by DMF reduction. The photolumines-
cent Pd NCs can be prepared by a simple, non-supported, and
surfactant-free method, which showed high catalytic activity
for two important carbon–carbon bond forming reactions,
namely the Suzuki–Miyaura and the Mizoroki–Heck cross-
coupling reaction, and excellent TONs were achieved (TONs
5
8
Fig. 3 Multiple catalyst-recycling in the Suzuki–Miyaura cross-
up to 4.5 Â 10 and 6.0 Â 10 , respectively). We have
developed a method for recycling the catalyst at least five
times in the Suzuki–Miyaura cross-coupling reaction.
coupling reaction. Conditions: as given in entry 4, Table 1.
Table 3 Pd-NCs-catalyzed Mizoroki–Heck reaction of iodobenzene
(
This work was supported by the Strategic Project to Support
the Formation of Research Bases at Private Universities
a
1g) with ethyl acrylate (4a) under various conditions
(2010–2014), matching fund subsidy from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
Notes and references
b
Yield 5a (%)
c
Entry
Pd NCs (mol%)
Solvent
TON
1 (a) Metal Nanoclusters in Catalysis and Materials Science: The
Issue of Size Control, ed. B. Corain, G. Schmid and N. Toshima,
Elsevier, 2007; (b) S. Vajda, M. J. Pellin, J. P. Greeley,
C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam,
S. Catillon-Mucherie, P. C. Redfern, F. Mehmood and P. Zapol,
Nat. Mater., 2009, 8, 213; (c) A. Roucoux, J. Schulz and H. Patin,
Chem. Rev., 2002, 102, 3757, and references therein.
À1
À3
3
5
7
6
1
2
3
4
5
6
10
10
DMF
DMF
DMF
NMP
THF
>99
>1.0 Â 10
>1.0 Â 10
>1.0 Â 10
3.0 Â 10
—
97
>99 (85)
30
À5
À5
10
10
À5
À7
À1
10
10
n.d.
60
23
8
2
DMF
DMF
6.0 Â 10
2
Nanoparticles and Catalysis, ed. D. Astruc, Wiley-VCH,
Weinheim, Germany, 2008.
d
7
10
2.3 Â 10
a
Conditions: 1g (1 mmol) was allowed to react with 4a (1.2 mmol) in
the presence of 1 mL of Pd NCs catalyst solution (1 mM–1 nM) and
3 (a) K. Okamoto, R. Akiyama, H. Yoshida, T. Yoshida and
S. Kobayashi, J. Am. Chem. Soc., 2005, 127, 2125;
(b) H. Oyamada, R. Akiyama, H. Hagio, T. Naito and
S. Kobayashi, Chem. Commun., 2006, 4297; (c) R. Xing, Y. Liu,
H. Wu, X. Li, M. He and P. Wu, Chem. Commun., 2008, 6297;
b
NEt
3
(1 mmol) in DMF (1 mL) at 140 1C for 15 h. GC yields based
on 1g used. The number in parenthesis shows the isolated yield.
c
d
TON = 5a (mol)/Pd NCs (mol). Bromobenzene was used instead
(d) G. Wei, W. Zhang, F. Wen, Y. Wang and M. Zhang, J. Phys.
Chem. C, 2008, 112, 10827.
of iodobenzene.
4
(a) E. H. Rahim, F. S. Kamounah, J. Frederiksen and
J. B. Christensen, Nano Lett., 2001, 1, 499; (b) K. R. Gopidas,
J. K. Whitesell and M. Anne Fox, Nano Lett., 2003, 3, 1757;
Table 4 Pd-NCs-catalyzed Mizoroki–Heck reaction of aryl iodides
1) with olefins (4)
a
(
(
c) T. Mizugaki, T. Kibata, K. Ota, T. Mitudome, K. Ebitani,
K. Jitsukawa and K. Kaneda, Chem. Lett., 2009, 1118;
d) M. Pittelkow, K. Moth-Poulsen, U. Boas and
(
J. B. Christensen, Langmuir, 2003, 19, 7682; (e) K. Yamamoto,
M. Higuchi, S. Shiki, M. Tsuruta and H. Chiba, Nature, 2002, 415,
5
09; (f) C. Ornelas, J. R. Aranzaes, L. Salmon and D. Astruc,
2
4 (R =)
b
Yield 5 (%)
c
Chem.–Eur. J., 2008, 14, 50; (g) G. R. Newkome, E. He and
C. N. Moorefield, Chem. Rev., 1999, 99, 1689.
Entry
1
TON
5
4
5
4
4
4
5
4
5 (a) T. Mitsudome, K. Nose, K. Mori, T. Mizugaki, K. Ebitani,
K. Jitsukawa and K. Kaneda, Angew. Chem., Int. Ed., 2007, 46,
3288; (b) Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485;
(c) B. Yoon and C. M. Wai, J. Am. Chem. Soc., 2005, 127, 17174.
6 J. L. Bolliger, O. Blacque and C. M. Frech, Chem.–Eur. J., 2008,
14, 7969.
7 (a) G. Zhang, H. Zhou, J. Hu, M. Liu and Y. Kuang, Green Chem.,
2009, 11, 1428; (b) J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu,
Y. Chang and G. Zhao, Angew. Chem., Int. Ed., 2004, 43, 1397.
M. B. Thathager, J. E. Ten Elshof and G. Rothenberg, Angew.
Chem., Int. Ed., 2006, 45, 2886.
9 (a) H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa,
Y. Iwasaki and M. Inada, Langmuir, 2010, 26, 5926;
1
2
3
4
5
1a
1b
1c
1e
1f
1g
1g
1g
CO
CO
CO
CO
CO
CO
CO
Ph
2
2
2
2
2
2
2
Et
Et
Et
Et
Et
4a
4a
4a
4a
4a
4b
4c
4d
>99 (83)
97 (94)
>99 (95)
82 (80)
51 (50)
72 (57)
>99 (92)
87 (70)
5b
5c
5d
5e
5f
5g
5h
5i
>1.0 Â 10
9.7 Â 10
>1.0 Â 10
8.3 Â 10
d
d
5.1 Â 10
t
6
7
8
Bu
Cy
7.7 Â 10
>1.0 Â 10
e
9.7 Â 10
a
b
Conditions: same as given in entry 2, Table 3. GC yields based on 1
8
c
used. The numbers in parentheses show the isolated yields. TON = 5
d
mol)/Pd NCs (mol). NEt
e
(2 mmol) was used. A 9 : 1 mixture of
(
3
5
i and 1,1-diphenylethylene.
(
b) H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa,
M. Inada and Y. Iwasaki, Chem. Commun., 2010, 46, 3759.
10 (a) J. Zheng, J. T. Petty and R. M. Dickson, J. Am. Chem. Soc.,
2003, 125, 7780; (b) S. Link, A. Beeby, S. Fitzgerald,
M. A. Elsayed, T. G. Schaaff and R. L. Whetten, J. Phys. Chem.
B, 2002, 106, 3410; (c) Y. Negishi, Y. Takasugi, S. Sato, H. Yao,
K. Kimura and T. Tsukuda, J. Am. Chem. Soc., 2004, 126, 6518;
reported by Kobayashi and co-workers, which showed highest
5
3a
TON up to 2.8 Â 10 in the reaction of 1g and 4a. When
bromotoluene was used instead of iodotoluene, the reaction
proceeded and 5a was obtained in 23% yield (entry 7, Table 3).
Table 4 shows data for the Mizoroki–Heck reactions
of various aryl iodides (1) with olefins (4) under the same
conditions given in entry 2, Table 3. As in the Suzuki–Miyaura
cross-coupling reaction, various aryl iodides and olefins
(d) A. Dass, J. Am. Chem. Soc., 2009, 131, 11666; (e) C. M. Aikens,
J. Phys. Chem. C, 2008, 112, 19797.
1
1
1 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
2 The Mizoroki-Heck Reaction, ed. M. Oestreich, Wiley-VCH,
Weinheim, Germany, 2009.
5
752 Chem. Commun., 2011, 47, 5750–5752
This journal is c The Royal Society of Chemistry 2011