Communications
(
0.038 g, 0.20 mmol), and Pd(OAc) (0.022 g, 0.10 mmol) (all together
[9] The reaction results in the anticipated nonafluorobutane-1-
sulfonamides: I. M. Lyapkalo, H.-U. Reissig, A. Schaefer, A.
Wagner, Helv. Chim. Acta 2002, 85, 4206 – 4215.
[10] Trialkylamines are not basic enough to promote the nonaflation,
whereas DBU gives low conversions as a result of the side
reaction with NfF. The results will be reported in a subsequent
full account.
2
in one lot), and the reaction mixture was stirred at 608C for 5.5 h. It
was then subjected to aqueous workup (benzene/water; in other cases
usually tBuOMe/water or hexane/water), the two-phase mixture was
filtrated carefully through a pad of celite and the aqueous phase re-
extracted with benzene. The combined organic layers were dried
(
Na SO ), the solvent was then removed under vacuum, and the
2 4
residue was subjected to column chromatography (silica gel, gradient
elution (1. hexane, 2. benzene/hexane 1:4, 3. benzene/hexane 1:1,
[11] R. Schwesinger, J. Willaredt, H. Schlemper, M. Keller, D.
Schmitt, H. Fritz, Chem. Ber. 1994, 127, 2435 – 2454. It has the
4
. benzene) to give pure 4a (0.579 g, 97% yield) as a yellow oil.
highest basicity (pK = 28.35 in MeCN) of the commercially
a
1
H NMR (C D , 500 MHz, 758C): d = 1.05 (t, J = 7.1 Hz, 3H, Me),
available P bases.
6
6
1
1
1
1
7
1
.29–1.36 (brm, 1H), 1.55 (ddd, J = 11.8, 9.0, 2.8 Hz, 1H), 1.64 (mc,
H), 1.77 (ddddd, J = 12.5, 12.5, 8.0, 2.8, 1.7 Hz, 1H), 1.83 (brd, J =
[12] a) Commercially available as a 2m solution in THF (pK = 33.49
a
in MeCN); b) According to the primary classification given by
Schwesinger, the subscript designates the number of P atoms in
7 Hz, 1H), 2.99 (brd, J = 17 Hz, 1H) (all CH ), 4.06 (dq, J = 10.8,
2
.1 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H) (both OCH ), 4.29 (brs,
2
the molecule. For the synthesis and properties of P or higher
2
H, CHN), 4.37 (brs, 1H, CHN), 6.29 (ddd, J = 5.3, 1.9, 1.8 Hz, 1H,
order phosphazene bases, see: R. Schwesinger, H. Schlemper, C.
Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway,
M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter, F. G.
Bordwell, A. V. Satish, G. Z. Ji, E. M. Peters, K. Peters, H. G.
von Schnering, L. Walz, Liebigs Ann. 1996, 1055 – 1082and
references therein.
CH=C), 6.68 (td, J = 7.6, 1.3 Hz, 1H), 6.74 (ddd, J = 9.5, 8.3, 1.3 Hz,
1
H), 6.78–6.73 (m, 1H), 7.25 ppm (td, J = 7.4, 1.8 Hz, 1H) (all CHAr);
C (C D , 125.8 MHz, 758C): d = 14.8 (q, Me), 29.9, 34.5, 38.2 (all brt,
6 6
1
3
CH ), 52.4, 53.7 (both d, CHN), 61.0 (t, OCH ), 82.8 (s, C=C), 95.0 (d,
2
2
3
2
J13C,19 = 3.2Hz, C =C), 112.8 (d, J13C,19 = 15.7 Hz, CAr), 115.7 (dd,
J13C,19 = 21.0 Hz), 124.1 (dd, J13C,19 = 3.8 Hz), 129.9 (dd, J13C,19
F
F
2
3
3
=
F
F
F
[13] S. Chang, S. H. Yang, P. H. Lee, Tetrahedron Lett. 2001, 42,
4833 – 4836.
[14] T. Imahori, Y. Kondo, J. Am. Chem. Soc. 2003, 125, 8082– 8083.
4
7
1
.9 Hz), 133.6 (dd, J
39.7 (brd, C=CH), 154.4 (s, C=O), 163.2ppm (d, J13C,19 = 251.6 Hz,
13C,19
= 1.3 Hz) (all CHAr), 118.6 (brs, C=CH),
F
1
F
À1
C-F); IR (film): n˜ = 3060–3035 cm (=C-H), 2980–2835 (C-H), 2210
[
[
[
[
15] For the relevant multistep methods known to date, see a) M.
(
C=C), 1700 (C=O), 1620–1490 (C=C); MS (EI, 80 eV): m/z (%) =
Shibasaki, Y. Torisawa, S. Ikegami, Tetrahedron Lett. 1982, 23,
+ + +
3
00 (M +1, 21), 299 (M , 100), 271 ([M ÀC H ], 37), 270
2
4
4607 – 4610; b) L. A. Paquette, S. Hormuth, C. J. Lovely, J. Org.
+
+
(
(
(
[M ÀC H ],
91),
242
([M ÀC H ÀCO],
45),
226
2
5
2
5
Chem. 1995, 60, 4813 – 4821; c) T. Matsuura, S. Yamamura, Y.
Terada, Tetrahedron Lett. 2000, 41, 2189 – 2192.
+
+
[M ÀC H ÀCO ], 28), 198 ([M ÀCO EtÀC H ], 85), 183
2
5
2
2
2
4
+
+
[M ÀCO EtÀC H ÀNH], 10), 29 (C H , 44); C,H,N analysis (%):
2
2
4
2
5
16] Preliminary investigations show that the nonaflation/elimination
protocol is applicable to a wide range of carbonyl compounds,
leading to terminal or internal alkynes or allenes, depending on
the stereoelectronic effects of the substituents in the carbonyl
substrate. The results will be reported in due course.
calcd for C H FNO (299.4): C 72.22, H 6.06, N 4.68; found C 71.91,
1
8
18
2
H 5.95, N 4.64.
Received: December 27, 2005
Published online: May 9, 2006
17] In our attempts to generate the nonaflates from isopropyl methyl
ketone or benzyl methyl ketone using P base (1 equiv) and NfF
2
Keywords: CÀCcoupling · cross-coupling · enynes ·
under the kinetic conditions, we could detect only mixtures of
the alkyne and the starting material, which clearly indicates that
nonaflation is the rate-determining step.
.
homogeneous catalysis · phosphazene bases
1
18] H NMR analyses of the reaction mixtures towards the end of
3
the final coupling step indicated that the Me SiO group at sp -
3
hybridized carbon centers of the coupling products remained
intact, which should warrant the stability of the most frequently
used alcohol silyl protecting groups, such as tBuMe Si, tBuPh Si,
[
1] “The chemistry of carbonyl compounds is virtually the backbone
of synthetic organic chemistry”: J. D. Roberts, M. C. Caserio,
Basic Principles of Organic Chemistry, Benjamin, New York,
2
2
or Et Si, under our reaction conditions.
3
[
19] Trimethylsilyl enolate 5a was obtained as an 8:92 E/Z mixture by
1965, p. 426.
silylation of the freshly distilled pentanal with Me SiCl/NaI/
[
2] a) W. J. Scott, J. E. McMurry, Acc. Chem. Res. 1988, 21, 47 – 54;
b) K. Ritter, Synthesis 1993, 735 – 762; c) S. Cacchi, Pure Appl.
Chem. 1996, 68, 45 – 52; d) R. Brückner, J. Suffert, Synlett 1999,
3
iPr NEt in MeCN at À458C to 58C. The pure Z isomer was then
2
isolated by preparative HPLC (68% yield).
[
[
20] E. J. Corey, A. W. Gross, Tetrahedron Lett. 1984, 25, 495 – 498.
21] The antimycotic agent terbinafine (Lamisil) manufactured by
Novartis Pharmaceuticals is perhaps most prominent example of
a widely applied drug bearing an eneyne structural motif; for
other interesting bioactive compounds, see: a) L. Garlaschelli, E.
Magistrali, G. Vidari, O. Zuffardi, Tetrahedron Lett. 1995, 36,
5633 – 5636; b) H.-J. Zhang, K. Sydara, G. T. Tan, C. Ma, B.
Southavong, D. D. Soejarto, J. M. Pezzuto, H. H. S. Fong, J. Nat.
Prod. 2004, 67, 194 – 200.
657 – 679.
[
[
3] a) K. Voigt, P. von Zezschwitz, K. Rosauer, A. Lansky, A.
Adams, O. Reiser, A. de Meijere, Eur. J. Org. Chem. 1998, 1521 –
1
534; b) S. Bräse, Synlett 1999, 1654 – 1656.
4] F. Bellina, D. Ciucci, R. Rossi, P. Vergamini, Tetrahedron 1999,
5, 2103 – 2112.
5
[
[
5] A. Wada, Y. Ieki, M. Ito, Synlett 2002, 1061 – 1064.
6] a) J. Suffert, A. Eggers, S. W. Scheuplein, R. Brueckner,
Tetrahedron Lett. 1993, 34, 4177 – 4180; b) T. Okauchi, T. Yano,
T. Fukamachi, J. Ichikawa, T. Minami, Tetrahedron Lett. 1999,
[22] J. W. Grissom, G. U. Gunawardena, D. Klingberg, D. Huang,
4
0, 5337 – 5340.
7] a) R. Zimmer, M. Webel, H.-U. Reissig, J. Prakt. Chem. 1998,
40, 274 – 277, and references therein; b) I. M. Lyapkalo, M.
Tetrahedron 1996, 52, 6453 – 6518, and references therein.
[
[23] Since Pd(OAc)
our method, LiCl was considered as an additive for in situ
generation of [Pd(PPh Cl ] from Pd(OAc) and PPh at the
outset of the cross-coupling step. [Pd(PPh Cl ] is one of the
2
was used as a uniform source of catalytic Pd in
3
Webel, H.-U. Reissig, Eur. J. Org. Chem. 2002, 1015 – 1025.
8] a) M. Webel, H.-U. Reissig, Synlett 1997, 1141 – 1142; b) I. M.
Lyapkalo, M. Webel, H.-U. Reissig, Eur. J. Org. Chem. 2002,
3
)
2
2
2
3
[
3
)
2
2
most frequently used precatalysts for the Sonogashira reaction
of alkenyl sulfonates: a) S. W. Scheuplein, K. Harms, R.
Brueckner, J. Suffert, Chem. Ber. 1992, 125, 271 – 278; b) L.
3646 – 3658; c) I. M. Lyapkalo, J. Hogermeier, H.-U. Reissig,
Tetrahedron 2004, 60, 7721 – 7729.
4
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4019 –4023