Analytical Chemistry
Page 8 of 9
Reactive Oxygen, Nitrogen, and Sulfur Species. Acc. Chem. Res. 2019, 52
(49). Cheng, D.; Peng, J.; Lv, Y.; Su, D.; Liu, D.; Chen, M.; Yuan, L.;
,
(
2582-2597.
Zhang, X., De Novo Design of Chemical Stability Near-Infrared
Molecular Probes for High-Fidelity Hepatotoxicity Evaluation In Vivo. J.
Am. Chem. Soc. 2019, 141, 6352-6361.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
30). Yue, Y.; Huo, F.; Cheng, F.; Zhu, X.; Mafireyi, T.; Strongin, R. M.;
Yin, C., Functional synthetic probes for selective targeting and multi-
analyte detection and imaging. Chem. Soc. Rev. 2019, 48, 4155-4177.
(31). Yang, X.; Liu, W.; Tang, J.; Li, P.; Weng, H.; Ye, Y.; Xian, M.;
Tang, B.; Zhao, Y., A multi-signal mitochondria-targeted fluorescent
probe for real-time visualization of cysteine metabolism in living cells and
animals. Chem. Commun. 2018, 54, 11387-11390.
(32). Zhang, D.; Chen, W.; Miao, Z.; Ye, Y.; Zhao, Y.; King, S. B.; Xian,
M., A reductive ligation based fluorescent probe for S-nitrosothiols.
Chem. Commun. 2014, 50, 4806-4809.
(50). Wu, W.; Zhang, C.; Rees, T. W.; Liao, X.; Yan, X.; Chen, Y.; Ji, L.;
Chao, H., Lysosome-Targeting Iridium(III) Probe with Near-Infrared
•-
Emission for the Visualization of NO/O
2
Crosstalk via In Vivo
Peroxynitrite Imaging. Anal. Chem. 2020, 92, 6003-6009.
(51). Neupane, L. N.; Park, J.; Mehta, P. K.; Oh, E.-T.; Park, H. J.; Lee,
K.-H., Fast and sensitive fluorescent detection of inorganic mercury
species and methylmercury using a fluorescent probe based on the
displacement reaction of arylboronic acid with the mercury species. Chem.
Commun. 2020, 56, 2941-2944.
(52). Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang,
B., Two-photon fluorescent probe for revealing drug-induced
hepatotoxicity via mapping fluctuation of peroxynitrite. Chemi. Sci. 2017,
8, 4006-4011.
(53). Zhang, H.; Liu, J.; Sun, Y.-Q.; Huo, Y.; Li, Y.; Liu, W.; Wu, X.;
Zhu, N.; Shi, Y.; Guo, W., A mitochondria-targetable fluorescent probe
for peroxynitrite: fast response and high selectivity. Chem. Commun.
2015, 51, 2721-2724.
(54). Miao, J.; Huo, Y.; Shi, H.; Fang, J.; Wang, J.; Guo, W., A Si-
rhodamine-based near-infrared fluorescent probe for visualizing
endogenous peroxynitrite in living cells, tissues, and animals. J. Mater.
Chem. B 2018, 6 , 4466-4473.
(55). Li, X.; Tao, R.-R.; Hong, L.-J.; Cheng, J.; Jiang, Q.; Lu, Y.-M.; Liao,
M.-H.; Ye, W.-F.; Lu, N.-N.; Han, F.; Hu, Y.-Z.; Hu, Y.-H., Visualizing
Peroxynitrite Fluxes in Endothelial Cells Reveals the Dynamic
Progression of Brain Vascular Injury. Journal of the American Chem.
Soc.2015, 137, 12296-12303.
(56). Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., A bright and
specific fluorescent sensor for mercury in water, cells, and tissue. Angew.
Chem. Int. Ed. 2007, 46, 6658-6661.
(57). Tian, J. W.; Chen, H. C.; Zhuo, L. H.; Xie, Y. X.; Li, N.; Tang, B., A
Highly Selective, Cell-Permeable Fluorescent Nanoprobe for Ratiometric
Detection and Imaging of Peroxynitrite in Living Cells. Chem. Eur. J.
2011, 17, 6626-6634.
(58). Sun, Q.; Xu, J.; Ji, C.; Shaibani, M. S. S.; Li, Z.; Lim, K.; Zhang, C.;
Li, L.; Liu, Z., Ultrafast Detection of Peroxynitrite in Parkinson’s Disease
Models Using a Near-Infrared Fluorescent Probe. Anal. Chem. 2020, 92
(5), 4038-4045.
(59). Oh, S.; Jeon, J.; Jeong, J.; Park, J.; Oh, E.-T.; Park, H. J.; Lee, K.-H.,
Fluorescent Detection of Methyl Mercury in Aqueous Solution and Live
Cells Using Fluorescent Probe and Micelle Systems. Anal. Chem. 2020,
92, 4917-4925.
(60). Liu, C.; Zhang, R.; Zhang, W.; Liu, J.; Wang, Y.-L.; Du, Z.; Song,
B.; Xu, Z. P.; Yuan, J., “Dual-Key-and-Lock” Ruthenium Complex Probe
for Lysosomal Formaldehyde in Cancer Cells and Tumors. J. Am. Chem.
Soc. 2019, 141, 8462-8472.
(61). Liu, Y.; Teng, L.; Xu, C.; Liu, H.-W.; Xu, S.; Guo, H.; Yuan, L.;
Zhang, X.-B., A “Double-Locked” and enzyme-activated molecular probe
for accurate bioimaging and hepatopathy differentiation. Chem. Sci. 2019,
10, 10931-10936.
(62). Teng, L.; Song, G.; Liu, Y.; Han, X.; Li, Z.; Wang, Y.; Huan, S.;
Zhang, X.-B.; Tan, W., Nitric Oxide-Activated “Dual-Key–One-Lock”
Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer
Therapy. J. Am. Chem. Soc. 2019, 141, 13572-13581.
(
33). Zhang, B.; Yang, X.; Zhang, R.; Liu, Y.; Ren, X.; Xian, M.; Ye,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Y.; Zhao, Y., Lysosomal-Targeted Two-Photon Fluorescent Probe to
Sense Hypochlorous Acid in Live Cells. Anal. Chem. 2017, 89, 10384-
1
(
Fluorescence imaging of hypochlorous acid and peroxynitrite in vitro and
in vivo with emission wavelength beyond 750 nm. Chem. Commun. 2020,
5
(
probes for hydrogen peroxide. Chin. Chem. Lett. 2019, 30, 1834-1842.
(36). Zhang, B.; Zhang, H.; Zhong, M.; Wang, S.; Xu, Q.; Cho, D.-H.;
Qiu, H., A novel off-on fluorescent probe for specific detection and
imaging of cysteine in live cells and in vivo. Chin. Chem. Lett. 2020, 31,
0390.
34). Wang, L.; Liu, J.; Zhao, S.; Zhang, H.; Sun, Y.; Wei, A.; Guo, W.,
6, 7718-7721.
35). Wen, Y.; Huo, F. J.; Yin, C. X., Organelle targetable fluorescent
1
33-135.
(37). Zhu, J.; Qin, F.; Zhang, D.; Tang, J.; Liu, W.; Cao, W.; Ye, Y., A
novel NIR fluorescent probe for the double-site and ratiometric detection
of SO
2
derivatives and its applications. New J. Chem. 2019, 43, 16806-
6811.
1
(38). Yang, X.; Wang, Y.; Liu, R.; Zhang, Y.; Tang, J.; Yang, E.; Zhang,
D.; Zhao, Y.; Ye, Y., A novel ICT-based two photon and NIR fluorescent
probe for labile Fe detection and cell imaging in living cells. Sensors
Actuators B: Chem.2019, 288, 217-224.
(39). Guo, Z.; Park, S.; Yoon, J.; Shin, I., Recent progress in the
development of near-infrared fluorescent probes for bioimaging
applications. Chem. Soc. Rev. 2014, 43, 16-29.
2
+
(
40). Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W., Far-red to near
infrared analyte-responsive fluorescent probes based on organic
fluorophore platforms for fluorescence imaging. Chem.Soc. Rev. 2013, 42
,
(
Induced Liver Injury by Multispectral Optoacoustic Tomography and
Fluorescence Imaging Using a Leucine-Aminopeptidase-Activated Probe.
Anal. Chem. 2019, 91, 8085-8092.
622-661.
41). Huang, Y.; Qi, Y.; Zhan, C.; Zeng, F.; Wu, S., Diagnosing Drug-
(
42). Chen, S. H.; Pang, C. M.; Chen, X. Y.; Yan, Z. H.; Huang, S. M.; Li,
X. D.; Zhong, Y. T.; Wang, Z. Y., Research Progress in Design, Synthesis
and Application of Multifunctional Fluorescent Probes. Chin. J. Org.
Chem. 2019, 39, 1846-1857.
(
43). Wu, L. Y.; Zeng, W. H.; Feng, L. D.; Hu, Y. X.; Sun, Y. D.; Yan, Y.
X.; Chen, H. Y.; Ye, D. J., An activatable ratiometric near-infrared
fluorescent probe for hydrogen sulfide imaging in vivo. Sci. China-Chem.
2020, 63, 741-750.
(
44). Murfin, L. C.; Weber, M.; Park, S. J.; Kim, W. T.; Lopez-Alled, C.
M.; McMullin, C. L.; Pradaux-Caggiano, F.; Lyall, C. L.; Kociok-Köhn,
G.; Wenk, J.; Bull, S. D.; Yoon, J.; Kim, H. M.; James, T. D.; Lewis, S.
E., Azulene-Derived Fluorescent Probe for Bioimaging: Detection of
Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. J.
Am. Chem. Soc. 2019, 141, 19389-19396.
(63). Zhang, Y. T.; Yan, C. X.; Wang, C.; Guo, Z. Q.; Liu, X. G.; Zhu, W.
H.,
A
Sequential Dual-Lock Strategy for Photoactivatable
(
45). Zhou, D.-Y.; Li, Y.; Jiang, W.-L.; Tian, Y.; Fei, J.; Li, C.-Y., A
Chemiluminescent Probes Enabling Bright Duplex Optical Imaging.
ratiometric fluorescent probe for peroxynitrite prepared by de novo
synthesis and its application in assessing the mitochondrial oxidative
stress status in cells and in vivo. Chem. Commun. 2018, 54, 11590-11593.
Angew. Chem. Int. Ed. 2020, 59, 9059-9066.
2
+
(64). Im, H. G.; Kim, H. Y.; Chang, S.-K., Dual signaling of Hg ions by
selective cleavage of thiophosphinated rhodol. Sensors and Actuators B:
Chemical 2014, 191, 854-859.
(
46). Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K., A Near-IR
Reversible Fluorescent Probe Modulated by Selenium for Monitoring
Peroxynitrite and Imaging in Living Cells. J. Am. Chem. Soc. 2011, 133,
1
(
bis(rhodamine)-based highly sensitive and selective fluorescent
chemosensor for Hg(ii) in aqueous media. New J. Chem. 2012, 36, 1961-
1
(
(65). Yuan, R.; Ma, Y.; Du, J.; Meng, F.; Guo, J.; Hong, M.; Yue, Q.; Li,
X.; Li, C., A novel highly selective near-infrared and naked-eye
fluorescence probe for imaging peroxynitrite. Anal. Methods 2019, 11,
1522-1529.
(66). Wu, Y.; Shi, A.; Li, Y.; Zeng, H.; Chen, X.; Wu, J.; Fan, X., A near-
infrared xanthene fluorescence probe for monitoring peroxynitrite in
living cells and mouse inflammation model. Analyst 2018, 143, 5512-
5519.
1030-11033.
47). Han, R.; Yang, X.; Zhang, D.; Fan, M.; Ye, Y.; Zhao, Y., A
965.
48). Zhang, D.; Li, M.; Jiang, Y.; Wang, C.; Wang, Z.; Ye, Y.; Zhao, Y.,
new sensitive and selective chromogenic and fluorescent
A
(67). Wagner, J.; Ciesielski, M.; Fleckenstein, C. A.; Denecke, H.;
Garlichs, F.; Ball, A.; Doering, M., Benign and High-Yielding, Large-
chemodosimeter for Hg(Ⅱ) in aqueous media and its application in live
cell imaging. Dyes Pigm. 2013, 99, 607-612.
ACS Paragon Plus Environment