1770
E. OHTA et al.
membrane fusion in echinoderm gametes with jaspisin,
a novel antihatching substance isolated from a marine
sponge. J. Biol. Chem., 269, 23262–23267 (1994).
14) Ohta, S., Kobayashi, H., and Ikegami, S., Isojaspisin:
a novel styryl sulfate from a marine sponge, Jaspis sp.,
that inhibits hatching of sea urchin embryos. Tetra-
hedron Lett., 35, 4579–4580 (1994).
15) Ohta, S., Kobayashi, H., and Ikegami, S., Jaspisin: a
novel styryl sulfate from the marine sponge, Jaspis
species. Biosci. Biotechnol. Biochem., 58, 1752–1753
(1994).
16) Uno, M., Ohta, S., Ohta, E., and Ikegami, S., Call-
yspongins A and B: novel polyacetylene sulfates from
the marine sponge Callyspongia truncata that inhibit
fertilization of starfish gametes. J. Nat. Prod., 59, 1146–
1148 (1996).
17) Uy, M. M., Ohta, S., Yanai, M., Ohta, E., Hirata, T., and
Ikegami, S., Exiguamide, a new spirocyclic sesquiter-
pene from the marine sponge Geodia exigua that inhibits
cell fate specification during sea urchin embryogenesis.
Biorg. Med. Chem. Lett., 12, 3037–3039 (2002).
18) Uy, M. M., Ohta, S., Yanai, M., Ohta, E., Hirata, T.,
and Ikegami, S., New spirocyclic sesquiterpenes
from the marine sponge Geodia exigua. Tetrahedron,
59, 731–736 (2003).
Thiele, it is suggested that its potent anti-fertilization
property brings about a the sponge-living marine
environment unsuitable for echinoderm reproduction.
Acknowledgments
We thank Mr. Hitoshi Fujitaka of Hiroshima Univer-
sity for NMR measurements. This study was supported
in part by a Grant-in-Aid from the Ministry of
Education, Culture, Sports, Science, and Technology
of Japan.
References
1) Chang, C. W. J., Naturally occurring isocyano/isothio-
cyanato and related compounds. Fortschr. Chem. Org.
Naturst., 80, 1–186 (2000).
2) Garson, M. J., and Simpson, J. S., Marine isocyanides
and related natural products: structure, biosynthesis and
ecology. Nat. Prod. Rep., 21, 164–179 (2004).
3) Blunt, J. W., Copp, B. R., Hu, W., Munro, M. H. G.,
Northcote, P. T., and Prinsep, M. R., Marine natural
products. Nat. Prod. Rep., 24, 31–84 (2007), and
previous reviews in the series.
4) Angerhofer, C. K., Pezzuto, J. M., Konig, G. M., Wright,
A. D., and Sticher, O., Antimalarial activity of sesqui-
terpenes from the marine sponge Acanthella klethra. J.
Nat. Prod., 55, 1787–1789 (1992).
5) Wright, A. D., Konig, G. M., Angerhofer, C. K.,
Greenidge, P., Linden, A., and Desqueyroux-Faundez,
R., Antimalarial activity: the search for marine-derived
natural products with selective antimalarial activity. J.
Nat. Prod., 59, 710–716 (1996).
6) Wright, A. D., Wang, H., Gurrath, M., Konig, G. M.,
Neumann, G., Loria, P., Foley, M., and Tilley, L.,
Inhibition of heme detoxification processes underlies the
antimalarial activity of terpene isonitrile compounds
from marine sponges. J. Med. Chem., 44, 873–885
(2001).
7) Singh, C., Srivastav, N. C., and Puri, S. K., In vivo active
antimalarial isonitriles. Bioorg. Med. Chem. Lett., 12,
2277–2279 (2002).
8) Hirota, H., Tomono, Y., and Fusetani, N., Terpenoids
with antifouling activity against barnacle larvae from the
marine sponge Acanthella cavernosa. Tetrahedron, 52,
2359–2368 (1996).
9) Okino, T., Yoshimura, E., Hirota, H., and Fusetani, N.,
New antifouling sesquiterpenes from four nudibranchs
of the family Phyllidiidae. Tetrahedron, 52, 9447–9454
(1996).
10) Chang, C. W. J., Patra, A., Baker, J. A., and Scheuer,
P. J., Kalihinols, multifunctional diterpenoid antibiotics
from marine sponges Acanthella spp. J. Am. Chem. Soc.,
109, 6119–6123 (1987).
11) Trimurtulu, G., and Faulkner, D. J., Six new diterpene
isonitriles from the sponge Acanthella cavernosa. J. Nat.
Prod., 57, 501–506 (1994).
19) Ohta, E., Ohta, S., Hongo, T., Hamaguchi, Y., Andoh,
T., Shioda, M., and Ikegami, S., Inhibition of chromo-
some separation in fertilized starfish eggs by kalihinol F,
a topoisomerase I inhibitor obtained from a marine
sponge. Biosci. Biotechnol. Biochem., 67, 2365–2372
(2003).
20) Mousseron, M., Jacquier, R., and Christol, H., Rear-
rangements acido-catalyses (1er memoire). Nouvelles
syntheses d0ꢂ-spirocetones. Bull. Soc. Chim. Fr., 346–
356 (1957).
21) Borch, R. F., Bernstein, M. D., and Durst, H. D.,
Cyanohydridoborate anion as a selective reducing agent.
J. Am. Chem. Soc., 93, 2897–2904 (1971).
22) Sasaki, T., Eguchi, S., and Katada, T., Synthesis of
adamantane derivatives. XXV. Synthesis and reactions
of 1- and 2-adamantyl isocyanides. J. Org. Chem., 39,
1239–1242 (1974).
23) Gillis, R. G., and Occolowitz, J. L., Isocyanides. III.
Electron impact study of aliphatic isocyanides. J. Org.
Chem., 28, 2924–2925 (1963).
24) Gokel, G. W., Widera, R. P., and Weber, W. P.,
Phase-transfer Hofmann carbylamine reaction: tert-butyl
isocyanide (2-Methylpropane, 2-isocyano). Org. Syn.,
55, 96–99 (1976).
25) van Dorsten, F. A., Wyss, M., Wallimann, T., and
Nicolay, K., Activation of sea-urchin sperm motility is
accompanied by an increase in the creatine kinase
exchange flux. Biochem. J., 325, 411–416 (1997).
26) Tombes, R. M., and Shapiro, B. M., Metabolite
channeling: a phosphorylcreatine shuttle to mediate high
energy phosphate transport between sperm mitochond-
rion and tail. Cell, 41, 325–334 (1985).
27) Winkler, M. M., Matson, G. B., Hershey, J. W. B.,
and Bradbury, E. M., 31P-NMR study of the activation
of the sea urchin egg. Exp. Cell Res., 139, 217–222
(1982).
12) Alvi, K. A., Tenenbaum, L., and Crews, P., Anthelmintic
polyfunctional nitrogen-containing terpenoids from
marine sponges. J. Nat. Prod., 54, 71–78 (1991).
13) Ikegami, S., Kobayashi, H., Myotoishi, Y., Ohta, S.,
and Kato, K. H., Selective inhibition of exoplasmic
28) Patra, A., Chang, C. W. J., Scheuer, P. J., Duyne, G. D.
V., Matsumoto, G. K., and Clardy, J., An unprecedented