Edge Article
Chemical Science
3
3
3
3
3
3
3
3
4
4
4
4
4
2 J. D. Cheeseman, A. D. Corbett, J. L. Gleason and
R. J. Kazlauskas, Chem.–Eur. J., 2005, 11, 1708–1716.
increased complexity in self-sorting, see: K. Mahata and
M. Schmittel, Beilstein J. Org. Chem., 2011, 7, 1555–1561.
3 V. Goral, M. I. Nelen, A. V. Eliseev and J.-M. Lehn, Proc. Natl. 57 J.-M. Lehn, in Constitutional Dynamic Chemistry, ed. M.
Acad. Sci. U. S. A., 2001, 98, 1347–1352. Barboiu, Springer, Berlin Heidelberg, 2012, pp. 1–32.
4 M. Schmittel and K. Mahata, Angew. Chem., Int. Ed., 2008, 47, 58 J.-M. Lehn, Supramolecular chemistry: concepts and
284–5286. perspectives, VCH, Weinheim, 1995.
5 A. Wilson, G. Gasparini and S. Matile, Chem. Soc. Rev., 2014, 59 J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4763–4768.
3, 1948–1962. 60 I. Saur and K. Severin, Chem. Commun., 2005, 1471–1473.
6 M. L. Saha, S. De, S. Pramanik and M. Schmittel, Chem. Soc. 61 S. Ulrich and J.-M. Lehn, J. Am. Chem. Soc., 2009, 131, 5546–
Rev., 2013, 42, 6860–6909. 5559.
7 L. A. Wessjohann, D. G. Rivera and F. Le ´o n, Org. Lett., 2007, 62 C. Bohne, Chem. Soc. Rev., 2014, 43, 4037–4050.
, 4733–4736. 63 M. Chaur, S. Kulchat, J.-M. Lehn, and work in progress.
8 J.-B. Lin, X.-N. Xu, X.-K. Jiang and Z.-T. Li, J. Org. Chem., 64 M. Ciaccia, R. Cacciapaglia, P. Mencarelli, L. Mandolini and
008, 73, 9403–9410. S. Di Stefano, Chem. Sci., 2013, 4, 2253–2261.
9 Q. Ji, R. C. Lirag and O. S. Miljanic, Chem. Soc. Rev., 2014, 43, 65 C. Fasting, C. A. Schalley, M. Weber, O. Seitz, S. Hecht,
5
4
9
2
ˇ
´
1
873–1884.
0 Y.-M. Legrand, A. van der Lee and M. Barboiu, Inorg. Chem.,
007, 46, 9540–9547.
1 M. L. Saha and M. Schmittel, Org. Biomol. Chem., 2012, 10,
651–4684.
B. Koksch, J. Dernedde, C. Graf, E.-W. Knapp and R. Haag,
Angew. Chem., Int. Ed., 2012, 51, 10472–10498.
66 P. G. M. Wuts and T. W. Greene, Greene's protective groups in
organic synthesis, Wiley-Interscience, Hoboken, N.J, 4th edn,
2007.
2
4
2 C.-F. Chow, S. Fujii and J.-M. Lehn, Chem. Commun., 2007, 67 K. C. Nicolaou, Classics in total synthesis: targets, strategies,
363–4365. methods, VCH, Weinheim, New York, 1996.
3 P. N. W. Baxter, J.-M. Lehn and K. Rissanen, Chem. Commun., 68 P. S. Baran, T. J. Maimone and J. M. Richter, Nature, 2007,
997, 1323–1324. 446, 404–408.
4
1
4 M. Hutin, C. J. Cramer, L. Gagliardi, A. R. M. Shahi, 69 K. C. Nicolaou, J. Org. Chem., 2009, 74, 951–972.
G. Bernardinelli, R. Cerny and J. R. Nitschke, J. Am. Chem. 70 C.-H. Wong and S. C. Zimmerman, Chem. Commun., 2013,
Soc., 2007, 129, 8774–8780.
49, 1679–1695.
4
4
5 K. Osowska and O. S. Miljani ´c , J. Am. Chem. Soc., 2011, 133, 71 Y. Li and X. Liu, Chem. Commun., 2014, 50, 3155–3158.
7
24–727.
6 K. Osowska and O. S. Miljanic, Angew. Chem., Int. Ed., 2011,
0, 8345–8349.
72 S. Mundinger, U. Jakob and W. Bannwarth, Chem.–Eur. J.,
ˇ
´
2014, 20, 1258–1262.
5
73 P. Bey and J. P. Vevert, Tetrahedron Lett., 1977, 18, 1455–
ˇ
´
4
4
7 Q. Ji and O. S. Miljanic, J. Org. Chem., 2013, 78, 12710–12716.
1458.
8 S. De, K. Mahata and M. Schmittel, Chem. Soc. Rev., 2010, 39, 74 B. W. Metcalf and P. Casara, Tetrahedron Lett., 1975, 16,
555–1575. 3337–3340.
9 K. Mahata and M. Schmittel, J. Am. Chem. Soc., 2009, 131, 75 R. Polt and M. A. Peterson, Tetrahedron Lett., 1990, 31, 4985–
6544–16554. 4986.
0 M. Schmittel and K. Mahata, Chem. Commun., 2008, 2550– 76 J. M. Hornback and B. Murugaverl, Tetrahedron Lett., 1989,
552. 30, 5853–5856.
1 I. Kocsis, D. Dumitrescu, Y.-M. Legrand, A. van der Lee, 77 M. Bergmann and L. Zervas, Ber. Dtsch. Chem. Ges. B, 1931,
1
4
5
5
1
2
I. Grosu and M. Barboiu, Chem. Commun., 2014, 50, 2621–
623.
2 J. R. Nitschke and J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A.,
003, 100, 11970–11974.
3 P. Kova ˇr ´ı ˇc ek and J.-M. Lehn, J. Am. Chem. Soc., 2012, 134,
446–9455.
4 P. Kova ˇr ´ı ˇc ek and J.-M. Lehn, Chem.–Eur. J., 2015, 21, 9380–
384.
5 (a) For general considerations on the notion of “simplexity”
64, 975–980.
2
78 M. A. Peterson and R. Polt, J. Org. Chem., 1993, 58, 4309–
4314.
79 E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem.
Soc., 1995, 117, 10805–10816.
80 J. N. Williams Jr and R. M. Jacobs, Biochem. Biophys. Res.
Commun., 1966, 22, 695–699.
81 J. C. Sheehan and V. J. Grenda, J. Am. Chem. Soc., 1962, 84,
2417–2420.
5
5
5
5
2
9
9
in particular in a biological context, see A. Berthoz, La 82 A. R. Khomutov, A. S. Shvetsov, J. J. Veps ¨a l ¨a inen and
simplexit ´e , Odile Jacob, 2009; (b) For an elaboration in the
A. M. Kritzyn, Tetrahedron Lett., 2001, 42, 2887–2889.
context of organic synthesis, see: Ph. Compain, L'actualit ´e 83 J. D. Prugh, L. A. Birchenough and M. S. Egbertson, Synth.
Chimique, 2003, april-may issue, 129–134. Commun., 1992, 22, 2357–2360.
6 (a) For an early case, see the competitive selection in the 84 J. S. McManis and B. Ganem, J. Org. Chem., 1980, 45, 2041–
generation of double and triple helicates in an 2042.
5
interconverting set of ligands and metal ions: see 85 B. Ganem, Acc. Chem. Res., 1982, 15, 290–298.
R. Kr ¨a mer, J.-M. Lehn and A. Marquis-Rigault, Proc. Natl. 86 J. C. Bradley, J. P. Vigneron and J. M. Lehn, Synth. Commun.,
Acad. Sci. U. S. A., 1993, 90, 5394–5398; (b) For the effect of
1997, 27, 2833–2845.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.