Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC03016E
COMMUNICATION
ChemComm
12 C. Wang, G. Jia, J. Zhou, Y. Li, Y. Liu, S. Lu and C. Li, Angew.
Chem., Int. Ed., 2012, 51, 9352.
13 C. Wang, Y. Li, G. Jia, Y. Liu, S. Lu and C. Li, Chem. Commun.,
2012, 48, 6232.
14 Y. Li, G. Jia, C. Wang, M. Cheng and C. Li, ChemBioChem,
2015, 16, 618.
15 J. P. Mahy, J. D. Marechal and R. Ricoux, Chem. Commun.,
2015, 51, 2476.
16 A. M. Rojas, P. A. Gonzalez, E. Antipov and A. M. Klibanov,
Biotechnol. lett., 2007, 29, 227.
17 L. C. Poon, S. P. Methot, W. Morabi-Pazooki, F. Pio, A. J.
Bennet and D. Sen, J. Am. Chem. Soc., 2011, 133, 1877.
18 E. Golub, H. B. Albada, W. C. Liao, Y. Biniuri and I. Willner, J.
Am. Chem. Soc., 2016, 138, 164.
chiral selectivities (Table 2, Entries 8-14). These observations
suggest that the enantioselective catalysis may occur both in
the terminal G-tetrad and loop region.
To
popularize
the
G-quadruplex
DNA
based
enantioselective sulfoxidation, various prochiral sulfides
including aryl alkyl sulfides, aryl benzyl sulfide and pyridine
alkyl sulfide were converted to the corresponding sulfoxides by
HT21•CuL4 catalyst (Fig. 2). It’s interesting to note that the
enantioselectivity is up to the highest of 77% ee with an
electron-withdrawing chloro substituent at 2’-position of
benzene ring.
19 J. M. Nicoludis, S. T. Miller, P. D. Jeffrey, S. P. Barrett, P. R.
Rablen, T. J. Lawton and L. A. Yatsunyk, J. Am. Chem.
Soc., 2012, 134, 20446.
Conclusions
20 E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach,
J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard,
R. G. Hadt and L. Tian, Chem. Rev., 2014, 114, 3659.
21 A. Draksharapu, A. J. Boersma, M. Leising, A. Meetsma, W. R.
Browne and G. Roelfes, Dalton Trans., 2015, 44, 3647.
In this communication, we present DNA based
enantioselective sulfoxidation reaction and up to 77% ee was
obtained, which is the highest enantioselectivity for DNA
based oxidation reaction to date. The mixed G-quadruplex
architectures of human telomeric sequence induced and 22 I. N. Rujan, J. C. Meleney and P. H. Bolton, Nucleic Acids Res.,
stabilized by K+ are responsible for the catalytic
2005, 33, 2022.
23 D. Renciuk, I. Kejnovska, P. Skolakova, K. Bednarova, J.
enantioselectivity and activity. The terminus and loops of G-
Motlova and M. Vorlickova, Nucleic Acids Res., 2009, 37
6625.
,
quadruplex are rather strongly conserved for enantioselective
induction. Furthermore, the antiparallel G-quadruplex affords
higher enantioselectivity than the two hybrid forms in
sulfoxidation reaction. This study expands the asymmetric
catalytic repertoire of DNAzymes to oxidative process.
24 J. Palacky, M. Vorlickova, I. Kejnovska and P. Mojzes, Nucleic
Acids Res., 2013, 41, 1005.
25 I. Kejnovska, M. Vorlickova, M. Brazdova and J. Sagi,
Biopolymers, 2014, 101, 428.
26 J. Y. Lee and D. S. Kim, Nucleic Acids Res., 2009, 37, 3625.
27 G. Biffi, M. Di Antonio, D. Tannahill and S. Balasubramanian,
Nat. Chem., 2014, 6, 75.
We thank Zhaochi Feng, Yan Liu, Jun Li and Changhao
Wang for their helpful discussions. This work is financially
supported by National Natural Science Foundation of China 28 P. Murat, Y. Singh and E. Defrancq, Chem. Soc. Rev., 2011,
40, 5293.
(No. 21503229, 21227801) and the Natural Science Foundation
of Liaonin Province (No. 2015020700). Jun Zhou’s current
affiliation is State Key Laboratory of Analytical Chemistry for
Life Science, School of Chemistry & Chemical Engineering,
Nanjing University, Nanjing 210023, China.
29 A. De Cian, E. Delemos, J. L. Mergny, M. P. Teulade-Fichou
and D. Monchaud, J. Am. Chem. Soc., 2007, 129, 1856.
30 P. S. Shirude, E. R. Gillies, S. Ladame, F. Godde, K. Shin-Ya, I.
Huc and S. Balasubramanian, J. Am. Chem. Soc., 2007, 129
11890.
,
31 S. Cosconati, L. Marinelli, R. Trotta, A. Virno, S. De Tito, R.
Romagnoli, B. Pagano, V. Limongelli, C. Giancola, P. G.
Baraldi, L. Mayol, E. Novellino and A. Randazzo, J. Am. Chem.
Soc., 2010, 132, 6425.
Notes and references
1
2
3
4
5
6
C. Zhou, J. L. Avins, P. C. Klauser, B. M. Brandsen, Y. Lee and
S. K. Silverman, J. Am. Chem. Soc., 2016, 138, 2106.
A. Ponce-Salvatierra, K. Wawrzyniak-Turek, U. Steuerwald, C.
Hobartner and V. Pena, Nature, 2016, 529, 231.
A. Rioz-Martinez and G. Roelfes, Curr. Opin. Chem. Biol.,
2015, 25, 80.
32 N. H. Campbell, N. H. Karim, G. N. Parkinson, M.
Gunaratnam, V. Petrucci, A. K. Todd, R. Vilar and S. Neidle, J.
Med. Chem., 2012, 55, 209.
33 W. J. Chung, B. Heddi, M. Tera, K. Iida, K. Nagasawa and A. T.
Phan, J. Am. Chem. Soc., 2013, 135, 13495.
34 J. Dai, M. Carver and D. Yang, Biochimie, 2008, 90, 1172-
1183.
35 K. N. Luu, A. T. Phan, V. Kuryavyi, L. Lacroix and D. J. Patel, J.
Am. Chem. Soc., 2006, 128, 9963.
G. Roelfes and B. L. Feringa, Angew. Chem., Int. Ed., 2005, 44
3230.
,
G. Biffi, D. Tannahill, J. McCafferty and S. Balasubramanian,
Nat. Chem., 2013, , 182.
V. S. Chambers, G. Marsico, J. M. Boutell, M. Di Antonio, G. P.
5
36 A. Ambrus, D. Chen, J. Dai, T. Bialis, R. A. Jones and D. Yang,
Nucleic Acids Res., 2006, 34, 2723.
Smith and S. Balasubramanian, Nat. Biotechnol., 2015, 33
877.
,
37 J. Dai, M. Carver, C. Punchihewa, R. A. Jones and D. Yang,
Nucleic Acids Res., 2007, 35, 4927.
7
8
9
J. Y. Lee, B. Okumus, D. S. Kim and T. Ha, Proc. Natl. Acad.
Sci. U. S. A., 2005, 102, 18938.
S. Roe, D. J. Ritson, T. Garner, M. Searle and J. E. Moses,
Chem. Commun., 2010, 46, 4309.
38 Z. Zhang, J. Dai, E. Veliath, R. A. Jones and D. Yang, Nucleic
Acids Res., 2010, 38, 1009.
39 K. W. Lim, S. Amrane, S. Bouaziz, W. Xu, Y. Mu, D. J. Patel, K.
N. Luu and A. T. Phan, J. Am. Chem. Soc., 2009, 131, 4301.
S. Dey and A. Jaschke, Angew. Chem., Int. Ed., 2015, 54
11279.
,
10 Y. Li, M. Cheng, J. Hao, C. Wang, G. Jia and C. Li, Chem. Sci.,
2015, , 5578.
6
11 M. Wilking and U. Hennecke, Org. Biomol. Chem., 2013, 11
6940.
,
4 | Chem. Commun., 2016, 00, 1-4
This journal is © The Royal Society of Chemistry 2016
Please do not adjust margins