Communication
Girish et al.
Table 3. Synthesis of pyrazole derivatives (3a-l)
Table 4. Catalyst recycle studies
NHNH
2
Catalyst recycle
Timeb (minutes)
Yieldc (%)
R
10 mol% ZnO nanoparticles
water, r.t
1(a-k)
1
2
3
4
5
15
15
15
15
20
95
94
92
90
88
N
O
O
1
R
N
1
R
R
3(a-l)
2(a-b)
Time
/min
Yield
/ (/%) b
a Reaction conditions: phenyl hydrazine (1 mmol), ethyl aceto-
acetate (1 mmol) 10 mol% ZnO Nano-catalyst, 3 mL water.
b Reaction progress monitored by TLC. c Isolated yield.
aEntry
R1
R2
Product
3a
1
C6H5
OEt
(2a)
OEt
(2a)
OEt
(2a)
OEt
(2a)
OEt
(2a)
OEt
(2a)
OEt
(2a)
OEt
(2a)
Me
15
10
15
5
9518a
(1a)
2
2-MeC6H5
(1b)
3b
3c
93
for 2 h and used for the next catalytic cycle. The catalyst
was found to be reusable up to five catalytic cycles without
any significant loss in catalytic activity (Table 4).
3
3-NO2C6H5
(1c)
7818a
85
4
2,5-diClC6H5
(1d)
3d
3e
ACKNOWLEDGEMENTS
5
4-CNC6H5
(1e)
5
9318b
9318c
9718d
95
We are thankful to the UGC-BSR (Order no DV-5/
662/RFSMS/2012-13), New Delhi, India for financial sup-
port and we are also thankful to SAIF, IITM and SAIF,
IITB for their support in carrying out research work regard-
ing the HRMS-TEM analysis.
6
4-FC6H5
(1f)
3f
5
7
4-CF3C6H5
(1g)
3g
10
15
10
5
8
3-CF3C6H5
(1h)
3h
3i
9
4-OMeC6H5
(1i)
9618e
85
REFERENCES
(2b)
Me
1. Clark, J. H. Green Chem. 1999, 1, 1–8; Sheldon, A. R. Green
Chem. 2005, 7, 267–278; Sreedhar, B.; Suresh Kumar, A.;
Divya Yada. Tetrahedron Lett. 2011, 52, 3565–3569.
2. Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109,
12663.
10
11
12
4-CNC6H5
(1e)
3j
(2b)
OEt
(2a)
OEt
(2a)
NH2CO
(1j)
3k
3l
4
9618f
9318g
NH2CS
(1k)
45
3. Rajeshwar, N.; Marcus, P.; Stefanie, L.; Karlheinz, B.;
Sabine, K.; Thomas, D.; Sascha, W.; Eckhard, M.; Boris, S.
ChemMedChem 2008, 3, 165-172; Fraley, M. E.; Hoffman,
W. F.; Rubino, R. S.; Hungate, R. W.; Tebbon, A. J.;
Rutledge, R. Z.; McFall, R. C.; Huckel, W. R.; Kendall, R.
L.; Coll, K. E.; Thomas, K. A. Bioorg. Med. Chem. Lett.
2002, 12, 2767; Kaymakcioglu, B. K.; Rollas, S.; Korcegez,
E.; Aricioglu, F. Eur. J. Pharm. Sci. 2005, 26, 97.
4. Anuradha, M.; Amitabha, S. Tetrahedron Lett. 2005, 46,
15–18.
a Reaction conditions: phenyl hydrazine (1 mmol), ethyl aceto-
acetate (1 mmol), 10 mol% of ZnO nano-catalyst; Solvent: water;
r.t. a Reaction progress monitored by TLC. b Isolated yield.
of pyrazoles in excellent yields. The experimental simplic-
ity, ease of product isolation, reusability of the catalyst and
ready availability of the reagents, wide functional group
tolerance are note-worthy features of this protocol. The
method is very economical and makes this process very
useful.
5. Vitor, R. F.; Alves, S.; Correia, J. D. G.; Paulo, A.; Santos, I.
J. Organomet. Chem. 2004, 689, 4764–4774.
6. Fawzia, A. Q.; Faisal, M.; Mervat, M. A.; Abeer, A. B. Mole-
cules 2009, 14, 78-88; Thomas, M, K.; Alexander, P.;
Carolin, P.; Jörg, S.; Muhamed, S. Eur. J. Inorg. Chem. 2013,
26, 4667–4678; Pasupala, R.; Girish, M. G.; Surya, P. T.;
Arun, K. S. J. Mol. Model. 2011, 17, 2475–2484.
7. Tahir, M.; Corey, R. H.; Brian, P.; Nicola, C. Tetrahedron
Lett. 2004, 45, 2137–2139.
Recycling study of the catalyst
We also investigated reusability of catalyst under wa-
ter using model phenyl hydrazine 1a with ethyl acetoace-
tate 2a in presence of 10 mol % of nano ZnO. After comple-
tion of the reaction, the mixture was dissolved in ethyl ace-
tate (10 mL) and filter off the catalyst . The catalyst was
treated with ethanol, acetone, and then finally washing
with distilled water. It was then dried in an oven at 80 °C,
8. Mirjalili, B. B. F.; Bamoniri, A.; Amrollahi, M. A.; Emtiazi,
H. Dig. J. Nanomater. Biostruct. 2010, 5, 897-902; Kidwai,
M.; Jain, A.; Poddar, R. J. Organomet. Chem. 2011, 696,
1178
© 2014 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
J. Chin. Chem. Soc. 2014, 61, 1175-1179