10.1002/adsc.201901562
Advanced Synthesis & Catalysis
In summary, we successfully demonstrated the
[4] a) L. Horner, H. Hoffmann, H. G. Wippel, Chem. Ber.
1958, 91, 61-63; b) W. S. Wadsworth, W. D. Emmons,
J. Am. Chem. Soc. 1961, 83, 1733-1738; c) J. Boutagy,
R. Thomas, Chem. Rev. 1974, 74, 87-99.
efficiency of photoredox/cobalt dual catalytic system
in transfer semihydrogenation reaction of alkynes.
This transformation occurred smoothly under blue
LED irradiation at ambient temperature and tolerated
both internal and external alkynes as well as various
functional groups. i-Pr2NEt and AcOH were proved
to be the hydrogen source for the transfer
hydrogenation. The advantages of the established
protocol may inspire more extensive research on
hydrogenation of alkynes.
[5] P. R. Blakemore, J. Chem. Soc., Perkin Trans. 1, 2002,
2563-2585.
[6] D. J. Peterson, J. Org. Chem. 1968, 33, 780-784.
[7] G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2009,
110, 1746-1787.
[8] A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103,
2945-2964.
Experimental Section
[9] a) A. M. Kluwer, C. J. Elsevier, in The Handbook of
Homogeneous Hydrogenation, Vol. 2 (Eds.: J. G. de
Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007, pp.
374-411; b) K. C. K. Swamy, A. S. Reddy, K. Sandeep,
A. Kalyani, Tetrahedron Lett. 2018, 59, 419-429.
General procedure for the semihydrogenation of
alkynes.
To a Schlenk tube containing a stirring bar was added
Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.002 mmol, 1 mol%), CoBr2
(0.01 mmol, 5 mol%), alkynes 1 (0.20 mmol, 1.0 equiv.).
Then n-Bu3P (0.03 mmol, 15 mol%), i-Pr2NEt (0.6 mmol,
3.0 equiv), AcOH (1.0 mmol, 5.0 equiv.), and 2.0 mL
anhydrous 1,4-dioxane were added to the reaction tube via
syringe under Ar atmosphere. The reaction mixture was
stirred for 14 h under Blue LED irradiation at ambient
temperature (the temperature range from 38 C to 42 C).
Finally, the solvent was removed in vacuum and the
residue was purified by column chromatography on silica
gel to afford the desired products.
[10] a) J. Li, R. Hua, T. Liu, J. Org. Chem. 2010, 75,
2966-2970; b) R. Maazaoui, R. Abderrahim, F. Chemla,
F. Ferreira, A. Perez-Luna, O. Jackowski, Org. Lett.
2018, 20, 7544-7549; c) S. Rao, K. R. Prabhu, Chem.
Eur. J. 2018, 24, 13954-13962; d) C.-Q. Zhao, Y.-G.
Chen, H. Qiu, L. Wei, P. Fang, T.-S. Mei, Org. Lett.
2019, 21, 1412-1416.
o
o
[11] a) J. Li, R. Hua, Chem. Eur. J. 2011, 17, 8462-8465;
b) K. Radkowski, B. Sundararaju, A. Fürstner, Angew.
Chem. 2013, 125, 373-378; Angew. Chem. Int. Ed.
2013, 52, 355-360; c) K. T. Neumann, S. Klimczyk, M.
N. Burhardt, B. Bang-Andersen, T. Skrydstrup, A. T.
Lindhardt, ACS Catal. 2016, 6, 4710-4714; d) I. D.
Alshakova, B. Gabidullin, G. I. Nikonov,
ChemCatChem. 2018, 10, 4874-4883; e) A. Guthertz,
M. Leutzsch, L. M. Wolf, P. Gupta, S. M. Rummelt, R.
Goddard, C. Farès, W. Thiel, A. Fürstner, J. Am. Chem.
Soc. 2018, 140, 3156-3169.
Acknowledgements
We acknowledge the National Natural Science Foundation of
China (No. 21676131 and No. 21462019), the Science
Foundation of Jiangxi Province (20143ACB20012), Jiangxi
Science& Technology Normal University (2018BSQD024, Doctor
Startup Fund) for financial support.
References
[12] S. A. Jagtap, B. M. Bhanage, ChemistrySelect 2018, 3,
[1] For selected reviews, see: a) A. Cirla, J. Mann, Nat.
Prod. Rep. 2003, 20, 558-564; b) G. C. Tron, T. Pirali,
G. Sorba, F. Pagliai, S. Busacca, A. A. Genazzani, J.
Med. Chem. 2006, 49, 3033-3044; c) C. Oger, L. Balas,
T. Durand, J.-M. Galano, Chem. Rev. 2013, 113, 1313-
1350; for selected examples, see: d) M. Fuchs, A.
Fürstner, Angew. Chem. 2015, 127, 4050-4054; Angew.
Chem. Int. Ed. 2015, 54, 3978-3982; e) H. Ding, Z.
Ruan, P. Kou, X. Dong, J. Bai, Q. Xiao, Marine Drugs
2019, 17, 226; f) R. Li, F. Jin, X.-R. Song, T. Yang, H.
Ding, R. Yang, Q. Xiao, Y.-M. Liang, Tetrahedron Lett.
2019, 60, 331-334.
713-718.
[13] a) K. Tani, A. Iseki, T. Yamagata, Chem. Commun.
1999, 1821-1822; b) J. Yang, C. Wang, Y. Sun, X. Man,
J. Li, F. Sun, Chem. Commun. 2019, 55, 1903-1906.
[14] H. S. La Pierre, J. Arnold, F. D. Toste, Angew. Chem.
2011, 123, 3986-3989; Angew. Chem. Int. Ed. 2011, 50,
3900-3903.
[15] a) R. Barrios-Francisco, J. J. García, Inorg. Chem.
2009, 48, 386-393; b) E. Richmond, J. Moran, J. Org.
Chem. 2015, 80, 6922-6929; c) K. Murugesan, C. B.
Bheeter, P. R. Linnebank, A. Spannenberg, J. N. H.
Reek, R. V. Jagadeesh, M. Beller, ChemSusChem. 2019,
12, 3363-3369.
[2] a) J. A. Baur, D. A. Sinclair, Nat. Rev. Drug. Discov.
2006, 5, 493-506; b) M. Athar, J. H. Back, X. Tang, K.
H. Kim, L. Kopelovich, D. R. Bickers, A. L. Kim,
Toxicol. Appl. Pharmacol. 2007, 224, 274-283; c) D. C.
Ferraz da Costa, E. Fialho, J. L. Silva, Molecules 2017,
22, 1014.
[16] a) S. Fu, N. Y. Chen, X. Liu, Z. Shao, S. P. Luo, Q.
Liu, J. Am. Chem. Soc. 2016, 138, 8588-8594; b) K.
Tokmic, A. R. Fout, J. Am. Chem. Soc. 2016, 138,
13700-13705; c) C. Chen, Y. Huang, Z. Zhang, X. Q.
Dong, X. Zhang, Chem. Commun. 2017, 53, 4612-
4615; d) V. G. Landge, J. Pitchaimani, S. P. Midya, M.
Subaramanian, V. Madhu, E. Balaraman, Catal. Sci.
Technol. 2018, 8, 428-433; e) K. Li, R. Khan, X. Zhang,
[3] a) G. Wittig, W. Haag, Chem. Ber. 1955, 88, 1654-
1666; b) B. E. Maryanoff, A. B. Reitz, Chem. Rev.
1989, 89, 863-927.
5
This article is protected by copyright. All rights reserved.