Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC02589K
COMMUNICATION
Journal Name
Based on preliminary results and known literature,12-13,15
a
Chem., 2008, 51, 4359-4369; (f) W. Zhu, J. Wang, S. Wang, Z. Gu, J. L.
Aceña, K. Izawa, H. Liu and V. A. Soloshonok, J. Fluorine Chem., 2014,
167, 37-54; (g) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña,
V. A. Soloshonok, K. Izawa and H. Liu, Chem. Rev., 2016, 116, 422-
518.
plausible mechanism for the trifluoromethylation of β-
nitroalkenes is shown in Scheme 5. The photocatalyst eosin-Y
absorbs light in the visible region (λmax = 539 nm) to give a
photoexcited singlet state, 1eosin-Y*, which undergoes
intersystem crossing to form the long-lived triplet state 3eosin-
2. (a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis Reactivity,
Applications; Wiley-VCH: Weinheim, 2005; (b) I. Ojima (Ed.), Fluorine in
Medicinal Chemistry and Chemical Biology; Wiley-Blackwell:
Chichester, 2009.
Y*. The reaction proceeds first via single-electron reduction
red
(SET) of triflyl chloride (2, E1/2 = −0.81 V vs. SCE) by the
3. (a) M. Shimizu and T. Hiyama, Angew. Chem. Int. Ed., 2005, 44, 214-
231; (b) O’Hagan, Chem. Soc. Rev., 2008, 37, 308-319; (c) T. Liang, C.
N. Neumann and T. Ritter, Angew. Chem. Int. Ed., 2013, 52, 8214-
8264.
3eosin-Y*. The radical anion of
2 immediately collapsed and
•
generates a more stable CF3 radical with the release of SO2
and chloride, which is an entropically driven process.12 The
radical addition of trifluoromethyl radical to β-nitroalkene
4
(a) R. J. Lundgren and M. Stradiotto, Angew. Chem. Int. Ed., 2010, 49,
9322-9324; (b) M. S. Wiehn, E. V. Vinogradova and A. Togni, J.
Fluorine Chem. 2010, 131, 951-957; (c) T. Furuya, A. S. Kamlet and T.
Ritter, Nature, 2011, 473, 470-477; (d) O. A. Tomashenko and V. V.
derivatives
Subsequently, oxidation of the radical intermediate
Eosin-Y radical cation to afford the expected 1-
1
produces carbon-centred radical
(
D
).
D
by the
(C)
Grushin, Chem. Rev., 2011, 111
, 4475-4521; (e) T. Besset, C.
Schneider and D. Cahard, Angew. Chem. Int. Ed., 2012, 51, 5048-5050;
(f) A. Studer, Angew. Chem. Int. Ed., 2012, 51, 8950-8958; (g) Y. Ye
and M. S. Sanford, Synlett., 2012, 23, 2005-2013; (h) P. Chen and G.
Liu, Synthesis, 2013, 45, 2919-2939; (i) S. Barata-Vallejo, B. Lantaño,
A. Postigo, Chem. Eur. J., 2014, 20, 16806-16829; (j) L. Chu and F.-L.
Qing, Acc. Chem. Res., 2014, 47, 1513-1522; (k) C. Zhang, Org.
Biomol. Chem., 2014, 12, 6580-6589; (l) X. Liu, C. Xu, M. Wang and Q.
Liu, Chem. Rev., 2015, 115, 683-730; (m) J. Charpentier, N. Früh and
A. Togni, Chem. Rev., 2015, 115, 650-682; (n) X.-H. Xu, K. Matsuzaki
and N. Shibata, Chem. Rev., 2015, 115, 731-764; (o) C. Alonso, E. M.
Marigorta, G. Rubiales and F. Palacios, Chem. Rev., 2015, 115, 1847-
trifluoromethylalkene 3, assisting in the elimination of NO2 and
thus regenerates the photoredox catalyst.15
1935; (p) O. Reiser, Chem 2016, 1, 344-345.
5. (a) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska and C. R. J.
Stephenson, J. Am. Chem. Soc., 2011, 133, 4160-4163; (b) A. Hafner
and S. Bräse, Adv. Synth. Catal., 2011, 353, 3044-3048; (c) E.-J. Cho
and S. L. Buchwald, Org. Lett. 2011, 13, 6552-6555; (d) N. Iqbal, S. K.
Choi, E. A. Ko and E. J. Cho, Tetrahedron Lett., 2012, 53, 2005-2008;
(e) Y. Li, L.-P. Wu and M. Beller, Chem. Commun., 2013, 49, 2628-
2630; (f) M. Presset, D. Oehlrich and G. A. Molander, J. Org. Chem.,
2013, 78, 12837-12843; (g) T. Patra, A. Deb and D. Maiti, Eur. J. Org.
Chem. 2013, 5247-5250; (h) X.-P. Wang, J.-H. Lin, C.-P. Zhang, J.-C.
Scheme 5.A plausible catalytic cycle for trifluoromethylation of β-nitroalkene (1).
Xiao and X. Zheng, Beilstein J. Org. Chem., 2013,
Yin, Y.-M. Li and C.-Y. Duan, Synthesis, 2014, 46, 607-612; (j) S. R.
Dubbaka, M. Salla and R. Bolisetti, RSC Adv., 2014, , 6496-6499; (k)
9, 2635-2640; (i) J.
Conclusions
4
N. J. W. Straathof, S. E. Cramer, V. Hessel and T. Noël, Angew. Chem.
Int. Ed., 2016, 55, 15549-15553.
In summary, a room-temperature trifluoromethylation of β-
nitrostyrenes under visible-light metal-free photoredox
catalysis is disclosed. The reaction operates under mild
6. J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu and L. Liu, Chem.
Commun., 2011, 47, 4300-4302.
conditions with no generation of copious metal waste and can 7. T. Liu and Q. Shen, Org. Lett., 2011, 13, 2342-2345.
8. A. T. Parsons, T. D. Senecal and S. L. Buchwald, Angew. Chem. Int.
thereby be scaled up in large-scale synthesis. The broad
substrate scope, as well as functional group tolerance (ether,
thioether, halides and nitro) with an excellent selectivity of this
process, makes it attractive for facile synthesis of 1-
trifluoromethylalkenes of high utility in various research areas.
Ed., 2012, 51, 2947-2950.
9. Z. He, T. Luo, M. Hu, Y. Cao and J. Hu, Angew. Chem. Int. Ed., 2012,
51, 3944-3947.
10. Z. Li, Z. Cui and Z. -Q. Liu, Org. Lett., 2013, 15, 406-409.
11. J.-J. Ma, W.-B. Yi, G.-P. Lu and C. Cai, Adv. Synth. Catal., 2015, 357
3447-3452.
,
12. D. A. Nagib and D. W. C. MacMillan, Nature, 2011, 480, 224-228.
13. (a) N. Iqbal, S. Choi, E. Kim and E. J. Cho, J. Org. Chem., 2012, 77
,
Acknowledgements
11383-11387; (b) Y. Yasu, T. Koike and M. Akita, Chem. Commun.,
2013, 49, 2037-2039; (c) P. Xu, A. Abdukader, K. Hu, Y. Cheng and C.
Zhu, Chem. Commun., 2014, 50, 2308-2310; (d) N. Iqbal, J. Jung, S.
Park and E. J. Cho, Angew. Chem. Int. Ed., 2014, 53, 539-542; (e) J. W.
Beatty, J. J. Douglas, K. P. Cole and C. R. J. Stephenson, Nature
This research is supported by the SERB (SB/FT/CS-065/2013).
SPM and JR thank CSIR for the fellowship.
Commun., 2015, 6, 7919-7924.
14. See the ESI.†
Notes and references
15. (a) S. Guo, Y. Yuan and J. Xiang, New J. Chem., 2015, 39, 3093-3097;
(b) J. Zheng, D. Wang and S. Cui, Org. Lett., 2015, 17, 4572-4575; (c)
N. Zhang, Z.-J. Quan, Z. Zhang, Y.-X. Da, and X.-C. Wang, Chem.
Commun., 2016, 52, 14234-14237; (d) N. Zhang, Z.-J. Quan and X.-C.
Wang. Adv. Synth. Catal., 2016, 358, 3179-3183.
1. For selected reviews, see: (a) M. Schlosser, Angew. Chem. Int. Ed.,
2006, 45, 5432-5446; (b) K. Mueller, C. Faeh and F. Diederich, Science,
2007, 317, 1881-1886; (c) S. Purser, P. R. Moore, S. Swallow and V.
Gouverneur, Chem. Soc. Rev., 2008, 37, 320-330; (d) K. L. Kirk, Org.
Process Res. Dev., 2008, 12, 305-321; (e) W. K. Hagmann, J. Med.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins