BULLETIN OF THE
Communication
KOREAN CHEMICAL SOCIETY
indole to the synthesized β-nitrostyrenes. The study on a
practical synthesis of biologically active β-nitrostyrenes
using this strategy is currently in progress.
Acknowledgment. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (NRF-2019R1A2C1008186 and
2020R1A4A4079870).
Supporting Information. Additional supporting informa-
tion may be found online in the Supporting Information
section at the end of the article.
Scheme 4. Extension and limitation of substrate scope.
References
1. (a) R. Winkler, C. Hertweck, Chembiochem 2007, 8, 973.
(b) K. Nepali, H. Y. Lee, J. P. Liou, J. Med. Chem. 2019, 62,
2851. (c) S. A. Bright, A. J. Byrne, E. Vandenberghe, P. V.
Browne, A. M. Mcelligott, M. J. Meegan, D. C. Williams,
Oncol. Rep. 2019, 41, 3127. (d) W. C. Chiu, Y. C. Lee, Y. H.
Su, Y. Y. Wang, C. H. Tsai, Y. A. Hou, C. H. Wang, Y. F.
Huang, C. J. Huang, S. H. Chou, P. W. Hsieh, S. F. Yuan,
PLoS One 2016, 11, e0166453. e J. Park, D. Pei, Biochemis-
try 2004, 43, 15014. f S. Kaap, I. Quentin, D. Tamiru, M.
Shaheen, K. Eger, H. J. Steinfelder, Biochem. Pharmacol.
2003, 65, 603.
Scheme 5. Application of β-nitrostyrenes to conjugate addition of
indole.
2. (a) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev.
2010, 110, 5447. (b) D. K. Nair, S. M. Mobin, I. N. N.
Namboothir, Org. Lett. 2012, 14, 4580. (c) T. Ishii, S.
Fujioka, Y. Sekiguchi, H. Kotsuki, J. Am. Chem. Soc. 2004,
126, 9558. (d) H. Huang, E. N. Jacobsen, J. Am. Chem. Soc.
2006, 128, 7170. (e) S. E. Denmark, A. Thorarensen, Chem.
Rev. 1996, 96, 137. (f) D. A. Evans, S. Mito, D. Seidel,
J. Am. Chem. Soc. 2007, 129, 11583. (g) L. Albrecht, G.
Dickmeiss, F. C. Acosta, C. Rodríguez-Escrich, R. L. Davis,
K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 2543. (h) J.-
Y. Son, G. U. Han, G. H. Ko, C. Maeng, S. Shin, P. H. Lee,
Bull. Kor. Chem. Soc. 2019, 40, 696. (i) Y. Q. Zou, L. Q. Lu,
L. Fu, N. J. Chang, J. Rong, J. R. Chen, W. J. Xiao, Angew.
Chem. Int. Ed. 2011, 50, 7171.
3. (a) S. E. Milner, T. S. Moody, A. R. Maguire, Eur. J. Org.
Chem. 2012, 2012, 3059. (b) S. Fioravanti, L. Pellacani, P. A.
Tardella, M. C. Vergari, Org. Lett. 2008, 10, 1449.
4. (a) I. Jovel, S. Prateeptongkum, R. Jackstell, N. Vogl, C.
Weckbecker, M. Beller, Adv. Synth. Catal. 2008, 350, 2493.
(b) H. Suzuki, T. Mori, J. Org. Chem. 1997, 62, 6498.
(c) D. K. Bryant, B. C. Challis, J. Iley, J. Chem. Soc., Chem.
Commun. 1989, 1027. (d) S. Roy, J. P. Das, P. Sinha, Org.
Lett. 2002, 4, 3055. (e) C. Zhou, T. Yang, Z. Yang, J. Li, J.
Hua, J. Yi, Synlett 2017, 28, 1079.
formation of simple aliphatic nitroalkenes. Additionally,
when either 2-vinylbenzothiophene or 2-vinylpyridine con-
taining heteroatoms such as sulfur and nitrogen liable to be
oxidized was subjected to this aerobic nitration, only
benzothiophene derivative 5d was formed in low yield.
Thus, the current reaction provides the synthetic method for
a wide range of β-nitrostyrenes and terminal nitroalkenes,
but it would be somewhat limited to electron-rich or halo-
genated styrenes and simple aliphatic olefins to obtain rea-
sonable yields of desired products.
Finally, our efforts focused on the construction of syn-
thetically useful building blocks using β-nitrostyrenes as a
Michael acceptor (Scheme 5). According to the procedure
reported in the literature,12 the Michael addition of indole
to the synthesized β-nitrostyrenes in the presence of sali-
cylic acid as a catalyst provided 3-(2-nitro-1-phenylethyl)
indoles 6a-d in high yields without any difficulty. There-
fore, this reaction could be combined with our nitration
protocol to give an access to a large quantity of syntheti-
cally useful compounds having a nitro functional group.
In conclusion, we have developed a facile synthesis of
(E)-β-nitrostyrenes by using TBN as a source of nitro group
and DDQ as a key oxidant under aerobic condition.13 This
process highlighted that a wide range of β-nitrostyrenes
could be synthesized under mild metal-free reaction condi-
tions at room temperature starting from readily available
styrenes. This method was extended to the synthesis of a
few aliphatic and heteroaromatic nitroalkenes. The further
application has been illustrated by the conjugate addition of
5. (a) S. Maity, T. Naveen, U. Sharma, D. Maiti, Synlett 2014,
25, 603. (b) W.-W. Sy, A. W. By, Tetrahedron Lett. 1985,
26, 1193. (c) S. Maity, S. Manna, S. Rana, T. Naveen, A.
Mallick, D. Maiti, J. Am. Chem. Soc. 2013, 135, 3355.
(d) P. K. Kancharla, Y. S. Reddy, S. Dharuman, Y. D.
Vankar, J. Org. Chem. 2011, 76, 5832. (e) R. S. Varma, K. P.
Naicker, P. J. Liesen, Tetrahedron Lett. 1998, 39, 3977. (f) T.
Taniguchi, T. Fujii, H. Ishibashi, J. Org. Chem. 2010, 75,
8126. (g) T. Naveen, S. Maity, U. Sharma, D. Maiti, J. Org.
Bull. Korean Chem. Soc. 2021, Vol. 42, 525–528
© 2021 Korean Chemical Society, Seoul & Wiley-VCH GmbH
527