bond formation is a much less studied transformation than the
corresponding C-N and C-O bond formations. The synthetic
reaction involving sulfur-containing compounds poses special
requirements because the sulfur functionality is known to be
reactive and may act as a poison for metal-based catalysts
because of its strong coordinative properties, often making the
catalytic reaction ineffective.1b In the last decades, transition-
metal-catalyzed organosulfur chemistry received particular
interest, which brought about important progress in the field.
One of the first reports involving the coupling between aryl
halides and thiols refers to Migita’s system, using Pd(PPh3)4 as
catalyst.5 Other efficient palladium catalysts are based on
bidentate phosphines or diverse organophosphane derivatives.6
Nevertheless, these systems still suffer from some limitations
because of the need to prepare and use environmentally
unfriendly PR3 ligands. Recently, the application of other metals
in the catalytic carbon-sulfur bond formation resulted in
synthetic protocols based on nickel7 and cobalt,8 but these were
fraught with common problems such as metal toxicity, low
turnover numbers, and reagents needed in excess. Consequently,
there still is interest in further development of the classical
Ullmann’s coupling reaction,1 applying cheap metals (e.g.,
copper) for the preparation of the diaryl thioether functionality.
The major drawbacks related to this transformation are the use
of large amounts of metal catalysts, their short lifetime (and
hence low turnover numbers), harsh reaction conditions, and
often the narrow scope. Therefore, different approaches have
been studied in order to develop a general and more efficient
system for the preparation of diaryl thioethers. Examples of
attractive copper-catalyzed processes have recently been reported
by Palomo,9 Buchwald,10 Venkataraman,11 and others12 and
more recently also by Dom´ınquez13 and Verma,14 mainly using
copper halide salts as the metal source together with a suitable
ligand. The general approach for the C-S bond coupling
Ligand-Free Copper-Catalyzed C-S Coupling of
Aryl Iodides and Thiols
Elena Sperotto,† Gerard P. M. van Klink,‡,§ Johannes G. de
Vries,‡ and Gerard van Koten*,†
Chemical Biology and Organic Chemistry, Debye Institute
for Nanomaterials Science, Faculty of Science, Utrecht
UniVersity, Padualaan 8, 3584 CH Utrecht, The Netherlands,
and DSM Pharmaceutical Products, AdVanced Synthesis,
Catalysis and DeVelopment, P.O. Box 18,
6160 MD Geleen, The Netherlands
ReceiVed March 17, 2008
A protocol for the copper-catalyzed aryl-sulfur bond forma-
tion between aryl iodides and thiophenols is reported. The
reaction is catalyzed by a low amount (1-2.5 mol %) of
readily available and ligand-free copper iodide salt. A variety
of diaryl thioethers are synthesized under relatively mild
reaction conditions with good chemoselectivity and func-
tional group tolerance.
The formation of aryl-sulfur bonds represents a key step in
the synthesis of many molecules that are of biological,
pharmaceutical, and materials interest.1 For example, a large
variety of aryl sulfides are in use for diverse clinical applications
such as the treatment of Alzheimer’s and Parkinson’s diseases,2
treatment of cancer,3 and treatment of human immunodeficiency
virus4 diseases. However, transition-metal-mediated C(aryl)-S
Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med.
Chem. 1997, 40, 3979–3985.
(5) Kosugi, M.; Ogata, T.; Terada, M.; Sano, H.; Migita, T. Bull. Chem.
Soc. Jpn. 1985, 58, 3657–3658.
(6) For selected examples, see: (a) Murata, M.; Buchwald, S. L. Tetrahedron
2004, 60, 7397–7403. (b) Ferna´ndez-Rodr´ıguez, M. A.; Shen, Q.; Hartwig, J. F.
Chem.—Eur. J. 2006, 12, 7782–7796, and references therein. (c) Ferna´ndez-
Rodr´ıguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180–
2181. (d) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587–4590.
(7) (a) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9, 3495–3499.
(b) Saxena, A.; Kumar, A.; Mozumdar, S. Appl. Catal. A 2007, 317, 210–215.
(c) Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron
Lett. 2008, 49, 1484–1487.
† Utrecht University.
‡ DSM Pharmaceutical Products.
§ Present address: DelftChemTech, Faculty of Applied Sciences, Delft
University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
(1) For reviews on C-S coupling, see: (a) Procter, D. J. J. Chem. Soc., Perkin
Trans. 1 2001, 335–354. (b) Kondo, T.; Mitsudo, T.-A. Chem. ReV. 2000, 100,
3205–3220, references therein. (c) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 43, 5400–5449. (d) Lindley, J. Tetrahedron 1984, 40, 1433–1456.
For a recent example on ligand-free copper catalysis, see: (e) Correa, A.; Bolm,
C. AdV. Synth. Catal. 2007, 349–2673.
(8) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613–
5616.
(9) Palomo, C.; Oiarbide, M.; Lo´pez, R.; Go´mez-Bengoa, E. Tetrahedron
Lett. 2000, 41, 1283–1286.
(10) Yee Kwong, F.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–3520.
(11) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4,
2803–2806.
(2) (a) Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J. W.; Greenlee, W.;
Billard, W.; Binch, H.; Crosby, G.; Ruperto, V.; Duffy, R. A.; McQuade, R.;
Lachowicz, J. E. Bioorg. Med. Chem. Lett. 2000, 10, 2247–2250. (b) Nielsen,
S. F.; Nielsen, E. O.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000,
43, 2217–2226.
(12) (a) Ranu, B. C.; Saha, A.; Jana, R. AdV. Synth. Catal. 2007, 349, 2690–
2696. (b) Zhu, D.; Xu, L.; Wu, F.; Wan, B. Tetrahedron Lett. 2006, 47, 5781–
5784. (c) Rout, L.; Sen, T. K.; Punniyamurty, T. Angew. Chem., Int. Ed. 2007,
46, 5583–5586. (d) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4,
4309–4312. (e) Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Eur. J. Org.
Chem. 2008, 4, 640–643. (f) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863–
3867.
(3) De Martino, G.; Edler, M. C.; La Regina, G.; Cosuccia, A.; Barbera,
M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico,
M.; Silvestri, R. J. Med. Chem. 2006, 49, 947–954.
(13) Carril, M.; SanMartin, R; Dom´ınguez, E.; Tellitu, I. Chem.—Eur. J.
2007, 13, 5100–5105.
(4) Kadlor, S. W.; Kalish, V. J.; Davies, J. F.; Shetty, B. V.; Fritz, J. E.;
Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.;
Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.;
(14) Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48,
7199–7202.
10.1021/jo800491k CCC: $40.75
Published on Web 06/21/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 5625–5628 5625