68
H.A. Dabbagh et al. / Journal of Molecular Catalysis A: Chemical 326 (2010) 55–68
catalyst BCT600NV (4.0%). Ether formation was increased for cat-
alysts calcined at lower temperatures under vacuum (6.18 for
BCT250LV and 0.61for BCT600HV).
Theoretical values complement the observed reactivity and
selectivity. This method predicts that (1 0 0) and (1 1 0) surfaces
with the adsorbed chiral alcohol show diasteroselective property.
The adsorption of alcohol conformers over the surface and the
distance between the basic sites-eliminable hydrogens is a key step
to understand the mechanism of alcohol dehydration.
[30] O. Maresca, A. Allouche, J.P. Aycard, M. Rajzmann, S. Clemendot, F. Hutschka, J.
Mol. Struct. Theochem. 505 (2000) 81–94.
[31] G. Gutierrez, A. Taga, B. Johansson, Phys. Rev. B 65 (2002) 0121011–0121014.
[32] T. Taniike, M. Tada, Y. Morikawa, T. Sasaki, Y. Iwasawa, J. Phys. Chem. B 110
(2006) 4929–4936.
[33] K. Sohlberg, S.J. Pennycook, S.T. Pantelides, J. Am. Chem. Soc. 121 (1999)
7493–7499.
[34] S. Cai, K. Sohlberg, J. Mol. Catal. A: Chem. 193 (2003) 157–164.
[35] S. Cai, K. Sohlberg, J. Mol. Catal. A: Chem. 248 (2006) 76–83.
[36] S. Cai, V. Chihaia, K. Sohlberg, J. Mol. Catal. A: Chem. 275 (2007) 63–71.
[37] C. Wolverton, K.C. Hass, Phys. Rev. B 63 (2000) 241021–2410216.
[38] M. Digne, P. Sautet, P. Rayboud, P. Euzen, H. Toulhoat, J. Catal. 211 (2002) 1–5.
[39] M. Digne, P. Sautet, P. Rayboud, P. Euzen, H. Toulhoat, J. Catal. 226 (2004) 54–68.
[40] M.C. Valero, P. Rayboud, P. Sautet, J. Phys. Chem. B 110 (2006) 1759–1767.
[41] M. Digne, P. Rayboud, P. Sautet, B. Rebours, H. Toulhoat, J. Phys. Chem. B 110
(2006) 20719–20720.
Acknowledgements
We would like to thank Isfahan University of Technology (IUT)
Research Council for their financial support (Grant # 86/500/9143).
The authors are grateful to Dr. Abbas Teimuri and Professor
Mohammad Ali Golozar for valuable discussions.
[42] M. Sun, A.E. Nelson, J. Adjaye, J. Phys. Chem. B 110 (2006) 2310–2317.
[43] A.E. Nelson, M. Sun, J. Adjaye, J. Phys. Chem. B 110 (2006) 20724–20726.
[44] G. Paglia, C.E. Buckley, A.L. Rohl, B.A. Hunter, R.D. Hart, J.V. Hanna, L.T. Byrne,
Phys. Rev. B 68 (2003) 1441101–14411011.
[45] G. Paglia, C.E. Buckley, A.L. Rohl, J. Phys. Chem. B 110 (2006) 20721–20723.
[46] L. Smrcok, V. Langer, J. Krestan, Acta Cryst. C62 (2006) i83–i84.
[47] A.D. Becke, J. Chem. Phys. 104 (1996) 1040–1046.
References
[48] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
[49] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.02, Gaussian, Inc.,
Pittsburgh, PA, 2003.
[1] Y. Kim, C. Kim, P. Kim, J. Yi, J. Non-Cryst. Solids 351 (2005) 550–556.
[2] J. Sanchez-Valante, X. Bokhimi, F. Hernandez, Langmuir 19 (2003) 3583–3588.
[3] M.M. Amini, M. Mirzaee, J. Sol–Gel Sci. Technol. 36 (2005) 19–23.
[4] Y.K. Park, E.H. Tadd, M. Zubris, R. Tannenbaum, Mater. Res. Bull. 40 (2005)
1506–1512.
[5] L. Le Bihan, F. Dumeignil, E. Payen, J. Grimblot, J. Sol–Gel Sci. Technol. 24 (2002)
113–120.
[6] Y. Kim, Sep. Sci. Technol. 35 (2000) 2327–2341.
[7] S. Keysar, G.E. Shter, Y. de Hazan, Y. Cohen, G.S. Grader, Chem. Mater. 9 (1997)
2464–2467.
[8] D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Lett. 42 (2000) 38–45.
[9] J.J. Fitzgerald, G. Piedra, S.F. Dec, M. Seger, G.E. Maciel, J. Am. Chem. Soc. 119
(1997) 7832–7842.
[10] L. Ji, J. Lin, K.L. Tan, H.C. Zeng, Chem. Mater. 12 (2000) 931–939.
[11] D.J. Suh, T.J. Park, Chem. Mater. 9 (1997) 1903–1905.
[12] S. Rezguit, B.C. Gates, Chem. Mater. 6 (1994) 2386–2389.
[13] G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter,
J.V. Hanna, Chem. Mater. 16 (2004) 220–236.
[14] G. Paglia, C.E. Buckley, T.J. Udovic, A.L. Rohl, F. Jones, C.F. Maitland, J. Connolly,
Chem. Mater. 16 (2004) 1914–1923.
[15] T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, J.H. Satcher,
Chem. Mater. 17 (2005) 395–401.
[16] G. Lefevre, M. Duc, P. Lepeut, R. Caplain, M. Fedoroff, Langmuir 18 (2002)
7530–7537.
[17] M.L. Guzman-Castillo, X. Bokhimi, A. Toledo-Antonio, J. Salmones-Blasquez, F.
Hernandez-Beltran, J. Phys. Chem. B 105 (2001) 2099–2106.
[18] C.J. Harlan, M.R. Mason, A.R. Barron, Organometallics 13 (1994) 2957–2969.
[19] H. Adkins, P. Perkins, J. Am. Chem. Soc. 47 (1925) 1163–1167.
[20] H. Knözinger, Angew. Chem. Int. Ed. 7 (1968) 791–805.
[21] H. Knözinger, R. Köhne, J. Catal. 5 (1966) 264–270.
[22] H. Knözinger, H. Buhl, K. Kochloefl, J. Catal. 24 (1972) 57–68.
[23] J.B. Peri, J. Phys. Chem. 69 (1965) 220–226.
[24] H.A. Dabbagh, C.G. Hughes, B.H. Davis, J. Catal. 133 (1992) 445–460.
[25] B. Shi, H.A. Dabbagh, B.H. Davis, J. Mol. Catal. A: Chem. 141 (1999) 257–262.
[26] H.A. Dabbagh, J. Mohammad Salehi, J. Org. Chem. 63 (1998) 7619–7627.
[27] H.A. Dabbagh, M.S. Yalfani, B.H. Davis, J. Mol. Catal. A: Chem. 238 (2005) 72–77.
[28] E.J.W. Verway, Z. Kristallogr. 91 (1935) 65–69.
[50] B. Delley, J. Chem. Phys. 92 (1990) 508–517.
[51] B. Delley, J. Chem. Phys. 113 (2000) 7756–7764.
[52] E. Kim, P.F. Weck, S. Berber, D. Tománek, Phys. Rev.
1134041–1134044.
B 78 (2008)
[53] A. Ionescu, A. Allouche, J.P. Aycard, M. Rajzmann, R.L. Gall, J. Phys. Chem. B 107
(2003) 8490–8497.
[54] G. Feng, C. Huo, C. Deng, L. Huang, Y. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem.
304 (2009) 58–64.
[55] H.S. Potdar, K.W. Jun, J.W. Bae, S.M. Kim, Y.J. Lee, Appl. Catal. A: Gen. 321 (2007)
109–116.
[56] M.L. Guzman-Castillo, F. Hernandez-Beltran, J.J. Fripiat, A. Rodriquez-
Hernandez, R. Garcia de Leon, J. Navarrete-Bolanos, A. Tobon-Cervantes, X.
Bokhimi, Catal. Today 107 (2005) 874–878.
[57] P. Alphonse, M. Courty, Thermochim. Acta 425 (2005) 75–89.
[58] H.C. Lee, H.J. Kim, S.H. Chung, K.H. Lee, H.C. Lee, J.S. Lee, J. Am. Chem. Soc. 125
(2003) 2882–2883.
[59] P.H. Colomban, J. Mater. Sci. Lett. 7 (1988) 1324–1326.
[60] G. Urretavizcaya, A.L. Cavalieri, J.M. Porto Lopez, I. Sobrados, J. Sanz, J. Mater.
Syn. Process. 6 (1998) 1–7.
[61] X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzman-Castillo, B. Mar-Mar, F.
Hernandez-Beltran, J. Navarrete, J. Solid State Chem. 161 (2001) 319–326.
[62] H.A. Dabbagh, K. Faghihi, Tetrahedron 56 (2000) 3611–3617.
[63] D.A. De Vito, F. Gilardoni, L. Kiwi-Minsker, P.Y. Morgantini, S. Porchet, A. Renken,
J. Weber, J. Mol. Struct. Theochem. 469 (1999) 7–14.
[29] A. Ionescu, A. Allouche, J.P. Aycard, M. Rajzmann, F. Hutschka, J. Phys. Chem. B
106 (2002) 9359–9366.
[64] H. Aghabozorg, F. Manteghi, S. Sheshmani, J. Iran. Chem. Soc. 5 (2008) 184–227.