C
Synlett
P. B. Sarode et al.
Letter
Five- and six-membered cyclic secondary amines reacted
smoothly, affording the desired products. Trimethylsilyl-
acetylene also underwent the reaction smoothly.
The ease of product isolation prompted us to consider
the recyclability of the catalyst (see Supporting Information
for details of recyclability). The catalytic efficacy of
(4) (a) Li, Z.; Wei, C.; Chen, L.; Varma, R. S.; Li, C.-J. Tetrahedron Lett.
2004, 45, 2443. (b) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473.
(c) Yan, W.; Wang, R.; Xu, Z.; Xu, J.; Lin, L.; Shen, Z.; Zhou, Y.
J. Mol. Catal. A: Chem. 2006, 255, 81. (d) Zhang, Y.; Santos, A.
M.; Herdtweck, E.; Mink, J.; Kühn, F. E. New J. Chem. 2005, 29,
366.
(5) (a) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584. (b) Wei, C.;
Zn(OTf) was tested in up to five runs for the synthesis of 4a
Li, Z.; Li, C.-J. Synlett 2004, 1472.
2
(
Figure 1), and it was found that there was no appreciable
(6) Lo, V. K.-Y.; Liu, Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2006, 8,
529.
1
loss of catalytic activity of the catalyst.
(7) Zhang, Y.; Li, P.; Wang, M.; Wang, L. J. Org. Chem. 2009, 74, 4364.
8) (a) Li, P.; Zhang, Y.; Wang, L. Chem. Eur. J. 2009, 15, 2045.
(
(b) Chen, W.-W.; Nguyen, R. V.; Li, C.-J. Tetrahedron Lett. 2009,
50, 2895.
(
9) (a) Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. Tet-
rahedron Lett. 2004, 45, 7319. (b) Fodor, A.; Kiss, Á.; Debreczeni,
N.; Hell, Z.; Gresits, I. Org. Biomol. Chem. 2010, 8, 4575.
(
c) Aliaga, M. J.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8,
3.
10) (a) Wang, M.; Li, P.; Wang, L. Eur. J. Org. Chem. 2008, 2255.
b) Patil, M. K.; Keller, M.; Reddy, B. M.; Pale, P.; Sommer, J. Eur.
J. Org. Chem. 2008, 4440. (c) Li, P.; Wang, L. Tetrahedron 2007,
3, 5455.
11) (a) Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. ACS
Sustainable Chem. Eng. 2014, 2, 781. (b) Mallampati, R.;
Valiyaveettil, S. ACS Sustainable Chem. Eng. 2014, 2, 855.
4
(
(
6
Figure 1 Reuse of Zn(OTf) in the synthesis of 4a
2
(
In conclusion, we have developed a Zn(OTf) -catalyzed
three-component coupling of aldehydes, terminal alkynes,
and amines via C–H activation. Use of economical and read-
2
(
2
c) Karimi, B.; Gholinejad, M.; Khorasani, M. Chem. Commun.
012, 48, 8961. (d) Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.;
Jana, N. R.; Islam, S. M. RSC Adv. 2014, 4, 10001.
ily available Zn(OTf) offers a sustainable alternative to oth-
2
(12) (a) Yang, J.; Li, P.; Wang, L. Catal. Commun. 2012, 27, 58. (b) Li,
P.; Regati, S.; Huang, H.-C.; Arman, H. D.; Chen, B.-L.; Zhao, J. C.
G. Chin. Chem. Lett. 2015, 26, 6. (c) Borah, B. J.; Borah, S. J.;
Saikia, L.; Dutta, D. K. Catal. Sci. Tech. 2014, 4, 1047. (d) Bhuyan,
D.; Saikia, M.; Saikia, L. Catal. Commun. 2015, 58, 158. (e) Bosica,
G.; Gabarretta, J. RSC Adv. 2015, 5, 46074. (f) Xiong, X.; Chen, H.;
Zhu, R. Chin. J. Catal. 2014, 35, 2006. (g) Xiong, X.; Chen, H.; Zhu,
R. Catal. Commun. 2014, 54, 94. (h) Dulle, J.; Thirunavukkarasu,
K.; Mittelmeijer-Hazeleger, M. C.; Andreeva, D. V.; Shiju, N. R.;
Rothenberg, G. Green Chem. 2013, 15, 1238.
er expensive metal catalysts. Recyclability of the catalyst,
low catalyst loading, solvent-free conditions, and easy
workup are attributes of this protocol. The catalytic genera-
tion of zinc acetylides under solvent-free and sustainable
conditions provides avenues for further development of ef-
ficient C–C bond formation in this area.
Acknowledgment
(
13) González, M. J.; Lopez, L. A.; Vicente, R. Tetrahedron Lett. 2015,
6, 1600.
14) (a) Kende, A. S.; Liebeskind, L. S. J. Am. Chem. Soc. 1976, 98, 267.
b) Wongsa, N.; Sommart, U.; Ritthiwigrom, T.; Yazici, A.;
5
The authors are grateful to UGC New Delhi, India (F. No. 41-335 /2012
SR) dt.13.07.2012) for the financial support and SIF, VIT University,
Vellore for NMR analysis.
(
(
(
Kanokmedhakul, S.; Kanokmedhakul, K.; Willis, A. C.; Pyne, S.
G. J. Org. Chem. 2013, 78, 1138. (c) Binda, C.; Hubálek, F.; Li, M.;
Herzig, Y.; Sterling, J.; Edmondson, D. E.; Mattevi, A. J. Med.
Chem. 2004, 47, 1767.
Supporting Information
(
15) Park, K.; Heo, Y.; Lee, S. Org. Lett. 2013, 15, 3322.
Supporting information for this article is available online at
(
16) (a) Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. S.;
Venkanna, G. Tetrahedron Lett. 2007, 48, 7332. (b) Ramu, E.;
Varala, R.; Sreelatha, N.; Adapa, S. R. Tetrahedron Lett. 2007, 48,
7184. (c) Mukhopadhyay, C.; Rana, S. Catal. Commun. 2009, 11,
http://dx.doi.org/10.1055/s-0035-1562114.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
References and Notes
285. (d) Eagalapati, N. P.; Rajack, A.; Murthy, Y. L. N. J. Mol. Catal.
(1) (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
A: Chem. 2014, 381, 126.
Practice; Oxford University Press: New York, 2000. (b) Jiménez-
González, C.; Constable, D. J.; Ponder, C. S. Chem. Soc. Rev. 2012,
(17) (a) Corey, E. J.; Shimoji, K. Tetrahedron Lett. 1983, 24, 169.
(b) Afraj, S. N.; Chen, C.; Lee, G.-H. RSC Adv. 2014, 4, 26301.
(c) Borah, B. J.; Borah, S. J.; Saikia, K.; Dutta, D. K. Catal. Sci. Tech-
nol. 2014, 4, 4001.
(18) (a) Zhang, X.; Corma, A. Angew. Chem. 2008, 120, 4430. (b) Shi,
L.; Tu, Y.; Wang, M.; Zhang, F.; Fan, C. Org. Lett. 2004, 6, 1001.
(c) Ren, G.; Zhang, J.; Duan, Z.; Cui, M.; Wu, Y. Aust. J. Chem.
2009, 62, 75.
41, 1485. (c) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437.
(
(
2) Choudhury, L. H.; Parvin, T. Tetrahedron 2011, 67, 8213.
3) (a) Nasir Baig, R. B.; Varma, R. S. Solvent-Free Synthesis, In An
Introduction to Green Chemistry Methods; Future Science:
London, 2013, 18–38. (b) Singh, M. S.; Chowdhury, S. RSC Adv.
2012, 2, 4547.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D