ChemComm
Communication
4 D. J. Darley, D. S. Butler, S. J. Prideaux, T. W. Thornton, A. D. Wilson,
T. J. Woodman, M. D. Threadgill and M. D. Lloyd, Org. Biomol.
Chem., 2009, 7, 543–552.
5 L.-B. Gao, J.-Z. Wang, T.-W. Yao and S. Zeng, Chirality, 2012, 24,
86–95.
6 M. Yevglevskis, C. R. Bowskill, C. C. Y. Chan, J. H.-J. Heng,
M. D. Threadgill, T. J. Woodman and M. D. Lloyd, Org. Biomol.
Chem., 2014, 12, 6737–6744.
7 J. Luo, S. Zha, W. R. Gage, T. A. Dunn, J. L. Hicks, C. J. Bennett,
C. N. Ewing, E. A. Platz, S. Ferdinandusse, R. J. Wanders, J. M. Trent,
W. B. Isaacs and A. M. De Marzo, Cancer Res., 2002, 62, 2220–2226.
8 C. Kumar-Sinha, R. B. Shah, B. Laxman, S. A. Tomlins, J. Harwood,
W. Schmitz, E. Conzelmann, M. G. Sanda, J. T. Wei, M. A. Rubin and
A. M. Chinnaiyan, Am. J. Pathol., 2004, 164, 787–793.
9 Z. Jiang, G. R. Fanger, B. F. Banner, B. A. Woda, P. Algate, K. Dresser,
J. C. Xu, S. G. Reed, K. L. Rock and P. G. Chu, Cancer Detect. Prev.,
2003, 27, 422–426.
the a-proton is required for the chiral inversion of substrates by
AMACR,3,4 and therefore it is highly likely that chiral inversion
has also taken place. Substrate incubated with heat-inactivated
enzyme under the same conditions showed no changes, showing
that AMACR catalyses ‘racemization’ of unsaturated substrates.
Native human and rat enzymes have been previously reported33,34
not to bind similar unsaturated acyl-CoA esters (based on a competi-
tion assay), suggesting they bind relatively weakly compared to
saturated substrates.
Rearrangement of the double bond of 3S or 3R was not
catalysed by AMACR, with no formation of 4 as shown by the
absence of the characteristic methyl group singlet at ca. d 1.8
in the 1H NMR spectrum. These results imply that either no
proton donor is in close proximity to the distal end of the double
bond to facilitate migration or that reprotonation of the enolate
intermediate18 to give ‘racemization’ is much more efficient.
Incubation of the 2-unsaturated acyl-CoA ester 4 with active
AMACR showed, by 1H NMR analysis, that it was not converted
to 3 or any other product. It is not clear whether this is due to 4
failing to bind to AMACR or if it binds but does not undergo
a reaction. It is known that 2-methylene acyl-CoA esters, which
also possess a sp2-hybridised carbon-2, behave as reversible tight-
binding dead-end inhibitors of human AMACR 1A in vivo,2,13
suggesting that 4 may also be bound.
10 S. Zha, S. Ferdinandusse, S. Denis, R. J. Wanders, C. M. Ewing,
J. Luo, A. M. De Marzo and W. B. Isaacs, Cancer Res., 2003, 63,
7365–7376.
11 K. Takahara, H. Azuma, T. Sakamoto, S. Kiyama, T. Inamoto,
N. Ibuki, T. Nishida, H. Nomi, T. Ubai, N. Segawa and
Y. Katsuoka, Anticancer Res., 2009, 29, 2497–2505.
12 A. J. Carnell, I. Hale, S. Denis, R. J. A. Wanders, W. B. Isaacs, B. A. Wilson
and S. Ferdinandusse, J. Med. Chem., 2007, 50, 2700–2707.
13 A. Morgenroth, E. A. Urusova, C. Dinger, E. Al-Momani, T. Kull,
G. Glatting, H. Frauendorf, O. Jahn, F. M. Mottaghy, S. N. Reske and
B. D. Zlatopolskiy, Chem. – Eur. J., 2011, 17, 10144–10150.
14 B. A. P. Wilson, H. Wang, B. A. Nacev, R. C. Mease, J. O. Liu,
M. G. Pomper and W. B. Isaacs, Mol. Cancer Ther., 2011, 10, 825–838.
15 A. J. Carnell, R. Kirk, M. Smith, S. McKenna, L.-Y. Lian and
R. Gibson, ChemMedChem, 2013, 8, 1643–1647.
The results in this Communication demonstrate that human
AMACR 1A is able to catalyse irreversible elimination of substrates,
probably by an E1cb or E1cb-like E2 mechanism. The reaction is of
potential utility for measuring the AMACR activity, since quantifica-
tion of both the enoyl-CoA and fluoride products is possible. It is
also notable that several AMACR inhibitors with similar structures to
2R and 2S have been reported.12 Given that the only difference
between these compounds and 2R is the length of the side-chain, it
is quite possible that these compounds also undergo an elimination
reaction. Fluorine atoms are often used in drug molecules
(with 420% of all drugs containing at least one fluorine atom35),
but it is important to consider that they may be reactive under
certain circumstances. These results also extend the range
of substrates for the AMACR racemization reaction to include
2-methyl-3-enoyl-CoA esters.
16 F. A. Sattar, D. J. Darley, F. Politano, T. J. Woodman,
M. D. Threadgill and M. D. Lloyd, Chem. Commun., 2010, 46,
3348–3350.
17 P. Bhaumik, W. Schmitz, A. Hassinen, J. K. Hiltunen, E. Conzelmann
and R. K. Wierenga, J. Mol. Biol., 2007, 367, 1145–1161.
18 S. Sharma, P. Bhaumik, W. Schmitz, R. Venkatesan, J. K. Hiltunen,
E. Conzelmann, A. H. Juffer and R. K. Wierenga, J. Phys. Chem. B,
2012, 116, 3619–3629.
19 R. B. Hamed, J. R. Gomez-Castellanos, A. Thalhammer, D. Harding,
C. Ducho, T. D. W. Claridge and C. J. Schofield, Nat. Chem., 2011, 3,
365–371.
20 J. M. Schwab and D. C. T. Lin, J. Am. Chem. Soc., 1985, 107,
6046–6052.
21 J. R. Mohrig, Acc. Chem. Res., 2013, 46, 1407–1416.
22 M. D. Lloyd, T. J. Woodman, M. Jevglevskis and M. D. Threadgill,
UK Pat., 1401817.0, 2014.
23 F. Bargiggia and O. Piva, Tetrahedron: Asymmetry, 2003, 14,
1819–1827.
24 P. Kasaragod, W. Schmitz, J. K. Hiltunen and R. K. Wierenga, FEBS
J., 2013, 280, 3160–3175.
We thank Dr Simon E. Lewis (Department of Chemistry,
University of Bath, U.K.) for helpful discussions. This work was
supported by Prostate Cancer UK. The authors are members of
the Cancer Research @ Bath (CR@B) network.
25 K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013–1029.
26 P. Ryberg and O. Matsson, J. Am. Chem. Soc., 2001, 123, 2712–2718.
27 P. Ryberg and O. Matsson, J. Org. Chem., 2002, 67, 811–814.
28 R. H. Abeles and G. Fendrich, J. Am. Chem. Soc., 1981, 21, 6685–6695.
29 L. Williams, T. Nguyen, Y. Li, T. N. Porter and F. M. Raushel,
Biochemistry, 2006, 45, 7453–7462.
30 J. W. Kozarich, R. V. J. Chari, J. C. Wu and T. L. Lawrence,
J. Am. Chem. Soc., 1981, 103, 4593–4595.
Notes and references
31 A. Cornish-Bowden and R. Eisenthal, Biochem. J., 1974, 139,
721–730.
32 R. Eisenthal and A. Cornish-Bowden, Biochem. J., 1974, 139,
715–720.
33 W. Schmitz, R. Fingerhut and E. Conzelmann, Eur. J. Biochem., 1994,
222, 313–323.
34 W. Schmitz, C. Albers, R. Fingerhut and E. Conzelmann,
Eur. J. Biochem., 1995, 231, 815–822.
‡ Abbreviations used: AMACR, a-methylacyl-CoA racemase; CoA, coenzyme
A; DAST, diethylaminosulfur trifluoride; ppm, parts per million.
1 M. D. Lloyd, D. J. Darley, A. S. Wierzbicki and M. D. Threadgill,
FEBS J., 2008, 275, 1089–1102.
2 M. D. Lloyd, M. Yevglevskis, G. L. Lee, P. J. Wood, M. D. Threadgill
and T. J. Woodman, Prog. Lipid Res., 2013, 52, 220–230.
3 T. J. Woodman, P. J. Wood, A. S. Thompson, T. J. Hutchings,
G. R. Steel, P. Jiao, M. D. Threadgill and M. D. Lloyd, Chem. Commun., 35 H. Chen, S. Viel, F. Ziarelli and L. Peng, Chem. Soc. Rev., 2013, 42,
2011, 47, 7332–7334.
7971–7982.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.