2
084
Z. Cabrera, J. M. Palomo / Tetrahedron: Asymmetry 22 (2011) 2080–2084
In all cases, the activities of the supernatants were periodically
Acknowledgements
taken, and the activities were assayed by the method described
above. Finally, 10 mg of sodium borohydride were added under
This work has been sponsored by Fondecyt, Chile (Proyect
Fondecyt iniciation 11090321) and CSIC (Intramural Project
200980I133). We also thank the PUCV and Programa Bicentenario
de Ciencia y Tecnología (PBCT, Project PSD-081/2009). The help
and suggestions of Dr. Ángel Berenguer-Murcia (Instituto de Mate-
riales, Universidad de Alicante, Spain) are gratefully recognized.
32
gentle stirring at 25 °C to reduce the imino groups.
0 min, the immobilized enzyme was filtered by vacuum and
washed several times with an excess of distilled water.
After
3
4
.2.3. Inactivation of different ROL preparations
ROL immobilized preparations were incubated in the presence
of different solvents. At different times, samples were withdrawn
and washed 5 times with water. Finally, the residual activity was
measured as described previously.
References
1.
2.
3.
Reetz, M. T. Curr. Opin. Chem. Biol. 2002, 6, 145–150.
Sangeetha, R.; Arulpandi, I.; Geetha, A. J. Res. J. Microbiol. 2011, 6, 1–24.
Akai, S.; Kita, Y. Synth. Org. Chem. 2007, 65, 772–782.
4
.2.4. Asymmetric hydrolysis of 1 catalyzed by different ROL
4. García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2011, 111, 110–180.
5
6
7
.
.
.
Ghanem, A. Tetrahedron 2007, 63, 1721–1754.
Schmid, R. D.; Verger, R. Angew Chem., Int. Ed. 1998, 37, 1608–1633.
Sharma, D.; Sharma, B.; Shukla, A. K. Biotechnology 2011, 10, 23–40.
immobilized preparations
The activities of the different ROL preparations in the hydrolysis
of 1 were determined by adding 0.1 g of catalyst in 1.5 mL solution
of 1.2 mM of substrate in 25 mM sodium phosphate at pH 7 and
8. Mateo, C.; Palomo, J. M.; Fernández-Lorente, G.; Guisan, J. M.; Fernández-
Lafuente, R. Enzyme Microb. Technol. 2007, 40, 1451–1463.
9.
Palomo, J. M.; Fernández-Lorente, G.; Mateo, C.; Fuentes, M.; Fernández-
2
5 °C. The degree of hydrolysis was followed by reverse-phase
Lafuente, R.; Guisan, J. M. Tetrahedron: Asymmetry 2002, 13, 1337–1345.
HPLC (Spectra Physic SP 100 coupled with an UV detector Spectra
Physic SP 8450) on a Kromasil C18 (15 ꢁ 0.4 cm) column supplied
by Analysis Vinicos (Spain). In all cases, least triplicates of each as-
say were made. The elution was performed with a mobile phase of
acetonitrile (35% v/v) and 10 mM ammonium phosphate (65% v/v)
at pH 3. The flow rate was 1 mL/min. The elution was monitored by
recording the absorbance at 225 nm. The enantiomeric excesses
were determined at 10–15% conversion.
1
0. Palomo, J. M. Curr. Bioact. Compd. 2008, 4, 126–138.
11. Palomo, J. M. Curr. Org. Synth. 2009, 6, 1–14.
1
1
2. Palomo, J. M.; Cabrera, Z. Curr. Org Synth. 2011. In the press.
3. Godoy, C.; Fernández-lorente, G.; De las rivas, B.; Filice, M.; Guisan, J. M.;
Palomo, J. M. J. Mol. Catal. B: Enzym. 2011, 70, 144–148.
14. Cabrera, Z.; Palomo, J. M.; Fernández-Lorente, G.; Fernández-Lafuente, R.;
Guisan, J. M. Enzyme Microb. Technol. 2007, 40, 1280–1285.
1
5. Fernández-Lorente, G.; Palomo, J. M.; Mateo, C.; Munilla, R.; Ortiz, C.; Cabrera,
Z.; Guisan, J. M.; Fernández-Lafuente, R. Biomacromolecules 2006, 7, 2610–
2615.
1
1
6. Mogensen, J. E.; Sehgal, P.; Otzen, D. E. Biochemistry 2005, 44, 1719–1730.
7. Mori, S.; Yumoto, H.; Matsumi, R.; Nishigaki, T.; Ebara, Y.; Ueji, S. Tetrahedron:
Asymmetry 2005, 16, 3698–3702.
4
.2.5. Reuse of ROL-Lew-pH 7 biocatalyst in the asymmetric
hydrolysis of 1
18. Theil, F. Tetrahedron 2000, 56, 2905–2919.
1
2
2
9. Klibanov, A. M. Nature 2001, 409, 241–246.
The total conversion of substrate was determined by adding
0. Laane, C.; Boeren, S.; Vos, K.; Veger, C. Biotechnol. Bioeng. 1987, 30, 81–87.
1. Faber, K. Biotransformations in Organic Chemistry, 5th ed.; Springer: Berlin,
2004.
0
.6 g of catalyst in a 3 mL solution of 1.2 mM of substrate in the
presence of dioxane (20% v/v) and 25 mM sodium phosphate at
pH 7 and 5 °C. The calculation of yield was performed using the fol-
lowing equation:
22. Fryszkowska, A.; Komar, M.; Koszelewsk, D.; Ostaszewski, R. Tetrahedron:
Asymmetry 2005, 16, 2475–2485.
2
2
3. Reetz, M. T. Angew Chem., Int. Ed. 2011, 50, 138–174.
4. Cabrera, Z.; López-Gallego, F.; Fernández-Lorente, G.; Palomo, J. M.; Montes, T.;
Grazu, V.; Guisan, J. M.; Fernández-Lafuente, R. Enzyme Microb. Technol. 2007,
n½R ꢀ 2ꢂ þ n½S ꢀ 2ꢂ
yield ¼
;
n ¼ enantiomerðmolÞ:
n½1ꢂ
4
0, 997–1000.
2
5. Fern a´ ndez-Lorente, G.; Palomo, J. M.; Cabrera, Z.; Guisan, J. M.; Fern a´ ndez-
Lafuente, R. Enzyme Microb. Technol 2007, 41, 565–569.
4
.2.6. Determination of enantiomeric excess
The enantiomeric excess (ee) of the monoester formed was ana-
26. Haalck, L.; Paltauf, F.; Pleiss, J.; Schmid, R. D.; Spener, F.; Stadler, P. Methods
Enzymol. 1997, 284, 353–376.
27. Hiol, A.; Jonzo, M. D.; Rugani, N.; Druet, D.; Sarda, L.; Comeau, L. C. Enzyme
lyzed by Chiral Reverse Phase HPLC. The column was a Chiracel
OD-R. The mobile phase was acetonitrile (25% v/v) and 10 mM
ammonium phosphate (75% v/v) at pH 3 and the analyses were
performed at a flow of 0.7 mL/min by recording the absorbance
at 225 nm. The enantiomeric excesses were determined at 10–
Microb. Technol. 2000, 26, 421–430.
28. Li, W.; Li, R.-W.; Li, Q.; Du, W.; Liu, D. Process Biochem. 2010, 45, 1888–1893.
2
9. Ghamgui, H.; Karra-Chaâbouni, M.; Gargouri, Y. Enzyme Microb. Technol. 2004,
5, 355–363.
0. Guisan, J. M. Enzyme Microb. Technol. 1988, 10, 375–382.
3
3
31. Bolivar, J. M.; López-Gallego, F.; Godoy, C.; Rodrigues, D. S.; Rodrigues, R. C.;
Batalla, P.; Rocha-Martín, J.; Mateo, C.; Giordano, R. L. C.; Guisan, J. M. Enzyme
Microb. Technol. 2009, 45, 477–483.
2. Mateo, C.; Abian, O.; Bernedo, M.; Cuenca, E.; Fuentes, M.; Fernández-Lorente,
G.; Palomo, J. M.; Grazu, V.; Pessela, B. C. C.; Giacomini, C.; Irazoqui, G.;
Villarino, A.; Ovsejevi, K.; Batista-Viera, F.; Fernández-Lafuente, R.; Guisan, J. M.
Enzyme Microb. Technol. 2005, 37, 456–462.
1
5% conversion. The calculation of the ee and enantiomeric ratio
(E) was performed using the following equations:
3
n½Rꢂ ꢀ n ½Sꢂ
n½Rꢂ þ n½Sꢂ
n½Rꢂ ;
eeð%Þ ¼ ½
ꢂ ꢁ 100; E ¼
n ¼ enantiomerðmolÞ:
n½Sꢂ