4
.
Yamashita, T.; Ji, J.; Budhu, A.; Forgues, M.; Yang, W.;
4
. Summary
Wang, H.-Y.; Jia, H.; Ye, Q.; Qin, L.-X.; Wauthier, E.; Reid, L. M.;
Minato, H.; Honda, M.; Kaneko, S.; Tang, Z.-Y.; Wang, X. W.,
EpCAM-positive hepatocellular carcinoma cells are tumor-initiating
cells with stem/progenitor cell features. Gastroenterology 2009, 136,
1
5
G.; Dyson, J.; Del Rio, A.; D’Santos, C.; Williams, R.; Chokshi, S.;
Anders, R. A.; Bubici, C.; Papa, S., PARP14 promotes the Warburg
effect in hepatocellular carcinoma by inhibiting JNK1-dependent
PKM2 phosphorylation and activation. Nat. Commun. 2015, 6, 7882.
We herein report the development of a novel class of allosteric
modulators of the second macrodomain of PARP14. Initial
identification of carbazole GeA-69 (1) as a submicromolar
inhibitor of PARP14 MD2 was made following a medium
012-1024.
Iansante, V.; Choy, P. M.; Fung, S. W.; Liu, Y.; Chai, J.-
.
Inhibitory activity can be rationalised
through a PARP14 MD2 co-crystal of a similar derivative,
sulfonamide 2 (PDB ID 5O2D). Investigation into this carbazole
series was then made revealing new opportunities for ligand
elaboration. Systematic analysis of SAR demonstrated a very
narrow structure activity relationship for rings A-C (carbazole
scaffold), and for further optimisation of the screening hit 1 only
modifications of either the N-acyl residue or ring D showed
promise. A number of carbazole containing compounds were
tolerated in this newly identified allosteric site of PARP14 MD2
including a 3–cyano substituted phenylmethanesulfonamide 108.
Carbazole 108 displays submicromolar activity binding to
PARP14 MD2 by AlphaScreen (IC50 0.66 μM) which was also
6.
Mushtaq, M.; Darekar, S.; Klein, G.; Kashuba, E.,
Different Mechanisms of Regulation of the Warburg Effect in
Lymphoblastoid and Burkitt Lymphoma Cells. PLOS ONE 2015, 10
(8), e0136142.
7
.
(a) Barbarulo, A.; Iansante, V.; Chaidos, A.; Naresh, K.;
Rahemtulla, A.; Franzoso, G.; Karadimitris, A.; Haskard, D. O.;
Papa, S.; Bubici, C., Poly(ADP-ribose) polymerase family member
1
signal in multiple myeloma. Oncogene 2013, 32, 4231-4242; (b)
Cho, S. H.; Ahn, A. K.; Bhargava, P.; Lee, C.-H.; Eischen, C. M.;
McGuinness, O.; Boothby, M., Glycolytic rate and lymphomagenesis
depend on PARP14, an ADP ribosyltransferase of the B aggressive
lymphoma (BAL) family. Proc. Natl. Acad. Sci. U S A 2011, 108
(38), 15972-15977.
4 (PARP14) is a novel effector of the JNK2-dependent pro-survival
confirmed by BLI (K 0.55 μM). This lead molecule along with
D
others in this series are useful chemical starting points in the
development of chemical probes for this poorly understood
epigenetic target.
8
.
Han, W.; Li, X.; Fu, X., The macro domain protein family:
Acknowledgments
Structure, functions, and their potential therapeutic implications.
Mutat. Res., Rev. Mutat. Res. 2011, 727, 86-103.
The SGC is a registered charity (number 1097737) that receives
funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim,
Canada Foundation for Innovation, Eshelman Institute for
Innovation, Genome Canada, Innovative Medicines Initiative
9.
(a) Sonnenblick, A.; de Azambuja, E.; Azim, H. A., Jr.;
Piccart, M., An update on PARP inhibitors-moving to the adjuvant
setting. Nat. Rev. Clin. Oncol. 2015, 12, 27-41; (b) Lord, C. J.;
Ashworth, A., PARP inhibitors: Synthetic lethality in the clinic.
Science 2017, 355, 1152-1158.
(EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck
1
0.
(a) Peng, B.; Thorsell, A.-G.; Karlberg, T.; Schüler, H.;
KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario
Ministry of Economic Development and Innovation, Pfizer, São
Paulo Research Foundation-FAPESP, Takeda, and Wellcome
Yao, S. Q., Small Molecule Microarray Based Discovery of PARP14
Inhibitors. Angew. Chem. Int. Ed. 2017, 56 (1), 248-253; (b)
Andersson, C. D.; Karlberg, T.; Ekblad, T.; Lindgren, A. E. G.;
Thorsell, A.-G.; Spjut, S.; Uciechowska, U.; Niemiec, M. S.;
Wittung-Stafshede, P.; Weigelt, J.; Elofsson, M.; Schüler, H.;
Linusson, A., Discovery of Ligands for ADP-Ribosyltransferases via
Docking-Based Virtual Screening. J. Med. Chem. 2012, 55 (17),
[
106169/ZZ14/Z]. M.M. is grateful to the EPSRC Centre for
Doctoral Training in Synthesis for Biology and Medicine
EP/L015838/1) for a studentship, generously supported by
(
AstraZeneca, Diamond Light Source, Defence Science and
Technology Laboratory, Evotec, GlaxoSmithKline, Janssen,
Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex. We thank
Carina Glas and Britta Hettich for support in chemical synthesis.
7
706-7718; (c) Wang, P.; Li, J.; Jiang, X.; Liu, Z.; Ye, N.; Xu, Y.;
Yang, G.; Xu, Y.; Zhang, A., Palladium-catalyzed N-arylation of 2-
aminobenzothiazole-4-carboxylates/carboxamides: facile synthesis
of PARP14 inhibitors. Tetrahedron 2014, 70 (35), 5666-5673; (d)
Ekblad, T.; Lindgren, A. E. G.; Andersson, C. D.; Caraballo, R.;
Thorsell, A.-G.; Karlberg, T.; Spjut, S.; Linusson, A.; Schüler, H.;
Elofsson, M., Towards small molecule inhibitors of mono-ADP-
ribosyltransferases. Eur. J. Med. Chem. 2015, 95, 546-551; (e)
Upton, K.; Meyers, M.; Thorsell, A.-G.; Karlberg, T.; Holechek, J.;
Lease, R.; Schey, G.; Wolf, E.; Lucente, A.; Schüler, H.; Ferraris, D.,
Design and synthesis of potent inhibitors of the mono(ADP-
ribosyl)transferase, PARP14. Bioorg. Med. Chem. Lett. 2017, 27
References
1
.
(a) Gibson, B. A.; Kraus, W. L., New insights into the
molecular and cellular functions of poly(ADP-ribose) and PARPs.
Nat. Rev. Mol. Cell Biol. 2012, 13 (7), 411-424; (b) Rack, J. G. M.;
Perina, D.; Ahel, I., Macrodomains: Structure, Function, Evolution,
and Catalytic Activities. Annu. Rev. Biochem. 2016, 85, 431-454; (c)
Wahlberg, E.; Karlberg, T.; Kouznetsova, E.; Markova, N.;
Macchiarulo, A.; Thorsell, A.-G.; Pol, E.; Frostell, A.; Ekblad, T.;
Oncu, D.; Kull, B.; Robertson, G. M.; Pellicciari, R.; Schuler, H.;
Weigelt, J., Family-wide chemical profiling and structural analysis of
PARP and tankyrase inhibitors. Nat. Biotech. 2012, 30 (3), 283-288.
(13), 2907-2911.
1
1. (a) Schuller, M.; Riedel, K.; Gibbs-Seymour, I.; Uth, K.;
Sieg, C.; Gehring, A. P.; Ahel, I.; Bracher, F.; Kessler, B. M.; Elkins,
J. M.; Knapp, S., Discovery of a Selective Allosteric Inhibitor
Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose
Polymerase 14. ACS Chem. Biol. 2017, 12 (11), 2866-2874; (b)
Haikarainen, T.; Maksimainen, M. M.; Obaji, E.; Lehtiö, L.,
Development of an Inhibitor Screening Assay for Mono-ADP-
2
.
(a) Kleine, H.; Poreba, E.; Lesniewicz, K.; Hassa, P. O.;
Hottiger, M. O.; Litchfield, D. W.; Shilton, B. H.; Lüscher, B.,
Substrate-Assisted Catalysis by PARP10 Limits Its Activity to
Mono-ADP-Ribosylation. Mol. Cell 2008, 32 (1), 57-69; (b) Ame, J.-
C.; Spenlehauer, C.; de Murcia, G., The PARP superfamily.
BioEssays 2004, 26, 882-893; (c) Vyas, S.; Matic, I.; Uchima, L.;
Rood, J.; Zaja, R.; Hay, R. T.; Ahel, I.; Chang, P., Family-wide
analysis of poly(ADP-ribose) polymerase activity. Nat. Commun.
Ribosyl
Technology. SLAS DISCOVERY: Advancing Life Sciences R&D 0
0), 2472555217737006; (c) Ekblad, T.; Verheugd, P.; Lindgren, A.
Hydrolyzing
Macrodomains
Using
AlphaScreen
(
E.; Nyman, T.; Elofsson, M.; Schüler, H., Identification of
Poly(ADP-Ribose) Polymerase Macrodomain Inhibitors Using an
AlphaScreen Protocol. SLAS DISCOVERY: Advancing Life Sciences
R&D 0 (0), 2472555217750870.
2
3
014, 5, 4426.
Hottiger, M. O.; Hassa, P. O.; Lüscher, B.; Schüler, H.;
.
Koch-Nolte, F., Toward a unified nomenclature for mammalian
ADP-ribosyltransferases. Trends Biochem. Sci. 2010, 35 (4), 208-
1
2.
Forst, A. H.; Karlberg, T.; Herzog, N.; Thorsell, A.-G.;
Gross, A.; Feijs, K. L. H.; Verheugd, P.; Kursula, P.; Nijmeijer, B.;
2
19.