Journal of the American Chemical Society
Communication
the introduction of additional K+, the complexation percentages
of K+ and Tg chains within a given metallacycle might increase
accordingly. This increase could influence H-bonding between
(4) (a) Kumar, S.; Dory, Y. L.; Lepage, M.; Zhao, Y. Macromolecules
2011, 44, 7385−7393. (b) Barroso, T.; Viveiros, R.; Temtem, M.;
Casimiro, T.; Botelho do Rego, A. M.; Aguiar-Ricardo, A. ACS Macro
Lett. 2012, 1, 356−360.
the surrounding water molecules and 1, decreasing Tcloud
.
(5) (a) Bhargava, P.; Tu, Y.; Zheng, J. X.; Xiong, H.; Quirk, R. P.;
Cheng, S. Z. D. J. Am. Chem. Soc. 2007, 129, 1113−1121. (b) Zhang, L.;
Guo, R.; Yang, M.; Jiang, X.; Liu, B. Adv. Mater. 2007, 19, 2988−2992.
(c) Yhaya, F.; Lim, J.; Kim, Y.; Liang, M.; Gregory, A. M. Macromolecules
2011, 44, 8433−8445. (d) Wang, X.-J.; Xing, L.-B.; Wang, F.; Wang, G.-
X.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Langmuir 2011, 27, 8665−8671.
(6) Koopmans, C.; Ritter, H. J. Am. Chem. Soc. 2007, 129, 3502−3503.
(7) (a) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163−249. (b) Wang, X.
H.; Qiu, X. P.; Wu, C. Macromolecules 1998, 31, 2972−2976. (c) Maeda,
Y.; Higuchi, T.; Ikeda, I. Langmuir 2000, 16, 7503−7509. (d) Ono, Y.;
Shikata, T. J. Am. Chem. Soc. 2006, 128, 10030−10031. (e) Lutz, J.-F.;
In conclusion, a tri(ethylene glycol)-functionalized thermo-
sensitive amphiphilic metallacycle 1 was prepared with high
efficiency by means of the directional-bonding approach. It shows
good LCST behavior, including both highly sensitive phase
separation and excellent thermal reversibility. A stepwise
decrease in [1] led to a sharp increase in Tcloud. Moreover, the
turbidity temperature decreased with the introduction of K+. As
such, the Tcloud of 1 was tunable by two methods, changing either
the concentration of 1 or the molar ratio of K+ to the amphiphilic
metallacycle. Given the improved optical, magnetic, and
electronic properties of supramolecular coordination com-
plexes,12,13 diverse aggregates produced by macrocyclic amphi-
philes,9c,d and the favorable properties of emerging thermo-
responsive materials,2−6 we expect that the fundamental results
presented here will pave the way to construct novel multi-
functional stimuli-responsive materials.
̈
Akdemir, O.; Hoth, A. J. Am. Chem. Soc. 2006, 128, 13046−13407.
(8) (a) Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S. J.
Am. Chem. Soc. 2005, 127, 14922−14929. (b) Hirose, T.; Matsuda, K.;
Irie, M. J. Org. Chem. 2006, 71, 7499−7508. (c) Yang, W. Y.; Lee, E.; Lee,
M. J. Am. Chem. Soc. 2006, 128, 3484−3485. (d) Betancourt, J. E.;
Rivera, J. M. J. Am. Chem. Soc. 2009, 131, 16666−16668. (e) Lee, S.; Lee,
J.-S.; Lee, C. H.; Jung, Y.-S.; Kim, J.-M. Langmuir 2011, 27, 1560−1564.
(f) Dong, S.; Zheng, B.; Yao, Y.; Han, C.; Yuan, J.; Antonietti, M.;
Huang, F. Adv. Mater. 2013, 25, 6864−6867.
ASSOCIATED CONTENT
■
(9) (a) Ryu, J. H.; Oh, N. K.; Lee, M. Chem. Commun. 2005, 1770−
1772. (b) Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew. Chem., Int. Ed.
2006, 45, 7526−7530. (c) Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang,
F. J. Am. Chem. Soc. 2012, 134, 15712−15715. (d) Kauscher, U.; Stuart,
S
* Supporting Information
Experimental details and additional data. This material is
M. C. A.; Drucker, P.; Galla, H.-J.; Ravoo, B. J. Langmuir 2013, 29,
̈
7377−7383. (e) Yu, G.; Ma, Y.; Han, C.; Yao, Y.; Tang, G.; Mao, Z.;
Gao, C.; Huang, F. J. Am. Chem. Soc. 2013, 135, 10310−10313.
(10) (a) Chang, D. W.; Dai, L. J. Mater. Chem. 2007, 17, 364−371.
(b) Lee, E.; Jeong, Y.-H.; Kim, J.-K.; Lee, M. Macromolecules 2007, 40,
8355−8360. (c) Li, W.; Zhang, A.; Chen, Y.; Feldman, K.; Wu, H.;
AUTHOR INFORMATION
■
Corresponding Authors
Schluter, A. D. Chem. Commun. 2008, 5948−5950.
̈
Notes
(11) (a) Jun, Y. J.; Toti, U. S.; Kim, H. Y.; Yu, J. Y.; Jeong, B.; Jun, M. J.;
Sohn, Y. S. Angew. Chem., Int. Ed. 2006, 45, 6173−6176. (b) Zhang, X.;
Wang, C. Chem. Soc. Rev. 2011, 40, 94−101. (c) Li, L.; Che, Y.; Gross, D.
E.; Huang, H.; Moore, J. S.; Zang, L. ACS Macro Lett. 2012, 1, 1335−
1338. (d) Ogoshi, T.; Shiga, R.; Yamagishi, T.-a. J. Am. Chem. Soc. 2012,
134, 4577−4580. (e) Ogoshi, T.; Kida, K.; Yamagishi, T. -a. J. Am. Chem.
Soc. 2012, 134, 20146−20150.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
F.H. thanks the National Basic Research Program
(2013CB834502), the NSFC/China (21125417, 21434005),
the State Key Laboratory of Chemical Engineering, and the
Fundamental Research Funds for the Central Universities for
financial support. P.J.S. thanks the NSF (1212799) for financial
support. Dr. Xiaoji Cao from Research Center of Analysis and
Measurement of Zhejiang University of Technology is thanked
for her assistance with ESI-TOF-MS measurements.
(12) (a) Das, N.; Mukherjee, P. S.; Arif, A. M.; Stang, P. J. J. Am. Chem.
Soc. 2003, 125, 13950−13951. (b) Mukherjee, P. S.; Das, N.;
Kryschenko, Y. K.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2004,
126, 2464−2473. (c) Bar, A. K.; Gole, B.; Ghosh, S.; Mukherjee, P. S.
Dalton Trans. 2009, 6701−6704. (d) Chen, S.; Chen, L.-J.; Yang, H.-B.;
Tian, H.; Zhu, W. J. Am. Chem. Soc. 2012, 134, 13596−13599. (e) Yan,
X.; Jiang, B.; Cook, T. R.; Zhang, Y.; Li, J.; Yu, Y.; Huang, F.; Yang, H.-B.;
Stang, P. J. J. Am. Chem. Soc. 2013, 135, 16813−16816. (f) Cook, T. R.;
Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734−777. (g) Yan, X.; Li,
S.; Pollock, J. B.; Cook, T. R.; Chen, J.; Zhang, Y.; Ji, X.; Yu, Y.; Huang,
F.; Stang, P. J. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15585−15590.
(h) Chen, L.-J.; Zhao, G.-Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.; He, J.;
Abliz, Z.; Tan, H.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2014, 136, 5993−
6001. (i) Li, Z.-Y.; Zhang, Y.; Zhang, C.-W.; Chen, L.-J.; Wang, C.; Tan,
H.; Yu, Y.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2014, 136, 8577−8589.
REFERENCES
■
(1) Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry; W. H.
Freeman and Co.: New York, 1980.
(2) (a) Lachwa, J.; Szydlowski, J.; Visak, V. N.; Rebelo, L. P. N.;
Seddon, K. R.; Ponte, M. N.; Esperanca, J. M. S. S. H.; Guedes, J. R. J.
Am. Chem. Soc. 2005, 127, 6542−6543. (b) Jia, Z.; Chen, H.; Zhu, X.;
Yan, D. J. Am. Chem. Soc. 2006, 128, 8144−8145. (c) Zhang, H.; Cooper,
A. I. Adv. Mater. 2007, 19, 2439−2444. (d) Amajjahe, S.; Ritter, H.
Macromolecules 2008, 41, 3250−3253. (e) Kabanov, A. V.; Vinogradov,
S. V. Angew. Chem., Int. Ed. 2009, 48, 5418−5429. (f) Klaikherd, A.;
Nagamini, C.; Thayumanavan, S. J. Am. Chem. Soc. 2009, 131, 4830−
4838. (g) Wang, F.; Klaikherd, A.; Thayumanavan, S. J. Am. Chem. Soc.
2011, 133, 13496−13503. (h) Jochum, F. D.; Theato, P. Chem. Soc. Rev.
2012, 42, 7468−7483. (i) Ji, X.; Chen, J.; Chi, X.; Huang, F. ACS Macro
Lett. 2014, 3, 110−113.
́
(13) (a) Munoz, M. J. M.; Fernandez, G. Chem. Sci. 2012, 3, 1395−
1398. (b) Yan, X.; Li, S.; Cook, T. R.; Ji, X.; Yao, Y.; Pollock, J. B.; Shi, Y.;
Yu, G.; Li, J.; Huang, F.; Stang, P. J. J. Am. Chem. Soc. 2013, 135, 14036−
14039.
(14) (a) Gao, L.; Zheng, B.; Yao, Y.; Huang, F. Soft Matter 2013, 9,
7314−7319. (b) Terashima, T.; Kawabe, M.; Miyabara, Y.; Yoda, H.;
Sawamoto, M. Nat. Commun. 2013, 1, 276−288.
(3) (a) Ito, T.; Hioki, T.; Yamaguchi, T.; Shinbo, T.; Nakao, S.;
Kimura, S. J. Am. Chem. Soc. 2002, 124, 7840−7846. (b) Ito, T.; Sato, Y.;
Yamaguchi, T.; Nakao, S.-i. Macromolecules 2004, 37, 3407−3414.
(c) Ding, Y.; Wang, Z.; Zhang, X. Chem. Commun. 2013, 49, 5580−
5582.
D
dx.doi.org/10.1021/ja5093503 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX