Angewandte Chemie International Edition
10.1002/anie.201901067
COMMUNICATION
It is well-known that alkyl halides can form radicals with Ni-
catalyst.15,16 Thus we conducted the reaction using the alkyl
bromide with a terminal olefinic unit (Scheme 4A). In this case, a
double cyclized product 3ac was obtained with a diastereomeric
ratio of 50:50. Relying on the result that the intramolecular
arylation process provides high enantioselectivity, we conclude
that the cyclization of the alkyl bromide must proceed with no
enantiocontrol, which is characteristic for radical-mediated ring-
closure. Next, a trisubstituted olefin containing a cyclopropyl
group was employed in the radical clock reaction, affording the
ring opening product 3ad in a moderate yield (Scheme 4B). In
contrast, the formation of unrearranged product 3ad’ was not
observed. To interpret this result, we presume that the ring
opening of cyclopropane is likely initiated by a radical, which is
generated through homolytic Ni-Alkyl bond cleavage of the Ni(I)-
species after the formation of indane ring. However, non-radical
bearing a quaternary stereocenter in highly enantioselective
manner. Remarkably, this new method is bestowed with better
step-economy and high tolerance of
a wide range of
functionalities through circumventing the use of pre-generated
organometallics. In the plausible reaction mechanism, a Ni(I)-
mediated 5-exo cyclization turns out to be the enantio-
determining step, and the following cage-bound oxidative addition
with alkyl bromides and reductive elimination provides the
dicarbofunctionalization products.
Acknowledgements
This work is supported by National Natural Science Foundation of
China (Grant No. 21772183), the Fundamental Research Funds
for the Central Universities (WK2060190086), “1000-Youth
Talents Plan” starting up funding, as well as by the University of
Science and Technology of China. We also thank Prof. Mingming
Ma for the measurements of CD spectra.
cyclopropane ring opening via
a migratory insertion/β-C
elimination cascade could not be rule out in this case.
Keywords: Dicarbofunctionalization • Reductive Coupling •
Asymmetric Ni-Catalysis •Unactivated Alkenes • Quaternary
Stereocenter
[
1]
2]
For a review on redox-neutral dicarbofunctionalization of unactivated
alkenes, see: S. KC, R. Giri, J. Org. Chem. 2018, 83, 3013.
[
For
selected
examples
on
two-component
redox-neutral
dicarbofunctionalization of unactivated alkenes see: a) V. B. Phapale, E.
Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem. Int. Ed. 2007,
46, 8790; Angew. Chem. 2007, 119, 8946; b) H. Cong, G. C. Fu, J. Am.
Chem. Soc. 2014, 136, 3788; c) W. You, M. K. Brown, J. Am. Chem. Soc.
2014, 136, 14730; d) W. You, M. K. Brown, J. Am. Chem. Soc. 2015, 137,
14578; e) S. Thapa, P. Basnet, R. Giri, J. Am. Chem. Soc. 2017, 139,
5700; f) S. KC, P. Basnet, S. Thapa, B. Shrestha, R. Giri, J. Org. Chem.
2018, 83, 2920.
Scheme 4. Radical Clock Reactions.
[3]
For
selected
examples
on
three-component
redox-neutral
dicarbofunctionalization of unactivated alkenes, see: a) K. Mizutani, H.
Shinokubo, K. Oshima, Org. Lett. 2003, 5, 3959; b) J. Terao, Y. Kato, N.
Kambe, Chem. Asian J. 2008, 3, 1472; c) B. J. Stokes, L. Liao, A. M. de
Andrade, Q. Wang, M. S. Sigman, Org. Lett. 2014, 16, 4666; d) L. Wu,
F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2017,
Subsequently, we utilized two trisubstituted olefins with an
E/Z ratio of 50:50 as substrates in the Ni-catalyzed arylalkylation
reaction (Scheme 5). If the homolytic Ni-carbon bond cleavage
does not exist, the products 3ae and 3af are supposed to have
similar diastereomeric ratios as their alkene precursors. Actually,
they were both furnished in complete diastereoselectivities, which
supports our assumption.
139, 2904; e) B. Shrestha, P. Basnet, R. K. Dhungana, S. KC, S. Thapa,
J. M. Sears, R. Giri, J. Am. Chem. Soc. 2017, 139, 10653; f) J. Derosa,
Van T. Tran, M. N. Boulous, J. S. Chen, K. M. Engle, J. Am. Chem. Soc.
2017, 139, 10657; g) J. Derosa, V. A. van der Puy, Van T. Tran, M. Liu,
K. M. Engle, Chem. Sci. 2018, 9, 5278; h) S. KC, R. K. Dhungana, B.
Shrestha, S. Thapa, N. Khanal, P. Basnet, R. W. Lebrun, R. Giri, J. Am.
Chem. Soc. 2018, 140, 9801; i) P. Gao, L.-A. Chen, M. K. Brown, J. Am.
Chem. Soc. 2018, 140, 10653; j) L. Fu, S. Zhou, X. Wan, P. Chen, G. Liu,
J. Am. Chem. Soc. 2018, 140, 10965; k) W. Li, J. W. Boon, Y. Zhao,
Chem. Sci. 2018, 9, 600; l) P. Basnet, S. KC, R. K. Dhungana, B.
Shrestha, T. J. Boyle, R. Giri, J. Am. Chem. Soc. 2018, 140, 15586; m)
J. Derosa, R. Kleimans, Van T. Tran, M. Kurunananda, S. R. Wisniewski,
M. D. Eastgate, K. M. Engle, J. Am. Chem. Soc. 2018, 140, 17878.
a) Y. Peng, C.-S. Yan, X.-B. Xu, Y.-W. Wang, Chem. Eur. J. 2012, 18,
Scheme 5. Asymmetric Arylalkylation Using a Trisubstituted Alkene.
[4]
6039; b) Y. Peng, X.-B. Xu, J. Xiao, Y.-W. Wang, Chem. Commun. 2014,
50, 472; c) Y. Peng, J. Xiao, X.-B. Xu, S.-M. Duan, L. Ren, Y.-L. Shao,
Y.-W. Wang, Org. Lett. 2016, 18, 5170; d) A. García-Domínguez, Z. Li,
C. Nevado, J. Am. Chem. Soc. 2017, 139, 6835; e) X. Zhao, H.-Y. Tu, L.
Guo, S. Zhu, L. Chu, Nature Commun. 2018, 9, 3488; f) J. Xiao, X.-W.
Cong, G.-Z. Yang, Y.-W. Wang, Chem. Commun. 2018, 54, 2040; g) Y.-
L. Kuang, X.-F. Wang, D. Anthony, T.-N. Diao, Chem. Commun. 2018,
In conclusion, we developed a Ni-catalyzed asymmetric two-
component reductive arylalkylation of unactivated alkenes
tethered to aryl bromides with primary alkyl bromides, offering an
entry to approach diverse chiral benzene-fused cyclic compounds
This article is protected by copyright. All rights reserved.