Edge Article
Chemical Science
2 (a) T. J. Colacot, New Trends in Cross-Coupling, The Royal
Society of Chemistry, Cambridge, 2015; (b) M. Stradiotto
and R. J. Lundgren, Ligand Design in Metal Chemistry,
Wiley, Chichester, 2016; (c) N. Hazari, P. R. Melvin and
M. M. Beromi, Nat. Rev. Chem., 2017, 1, 25; (d) K. Wu and
A. G. Doyle, Nat. Chem., 2017, 9, 779.
3 Reviews: (a) S. Z. Tasker, E. A. Standley and T. F. Jamison,
Nature, 2014, 509, 299; (b) T. Mesganaw and N. K. Garg,
Org. Process Res. Dev., 2013, 17, 29; (c) B. M. Rosen,
K. W. Quasdorf, D. A. Wilson, N. Zhang, A. M. Resmerita,
N. K. Garg and V. Percec, Chem. Rev., 2011, 111, 1346;
Representative examples: (d) S. B. Blakey and
D. W. C. MacMillan, J. Am. Chem. Soc., 2003, 125, 6046; (e)
P. Maity, D. M. Shacklady-McAtee, G. P. A. Yap,
E. R. Sirianni and M. P. Watson, J. Am. Chem. Soc., 2013,
135, 280; (f) M. Tobisu, K. Nakamura and N. Chatani, J.
Am. Chem. Soc., 2014, 136, 5587; (g) H. Zhang, S. Hagihara
and K. Itami, Chem.–Eur. J., 2015, 21, 16796; (h) J. Cornella,
C. Zarate and R. Martin, Chem. Soc. Rev., 2014, 43, 8081; (i)
M. Tobisu and N. Chatani, Acc. Chem. Res., 2015, 48, 1717;
(j) E. J. Tollefson, L. E. Hanna and E. R. Jarvo, Acc. Chem.
Res., 2015, 48, 2344.
Scheme 2 Reactivity scale of amides and esters in TM-catalyzed acyl
C–N and acyl C–O coupling.
electrophiles for the formation of acyl-metal intermediates
(Scheme 2).19 The present barrier to chemoselective carbon–
carbon bond forming reactivity of unactivated esters and
amides by C(acyl)–X (X ¼ N, O) cleavage is located at ca. 10 kcal
molꢁ1 bond isomerization.20 The development of improved
catalyst systems will lay a foundation for a general application
of amide and ester coupling in synthesis. Isomerization barrier
is an important parameter that should be considered in acyl
couplings.
Conclusions
4 Reviews: (a) G. Meng, S. Shi and M. Szostak, Synlett, 2016, 27,
2530; (b) J. E. Dander and N. K. Garg, ACS Catal., 2017, 7,
1413; (c) J. Yamaguchi, K. Muto and K. Itami, Eur. J. Org.
Chem., 2013, 19; (d) R. Takise, K. Muto and J. Yamaguchi,
Chem. Soc. Rev., 2017, DOI: 10.1039/c7cs00182g.
5 Reviews on acyl-metal intermediates: (a) L. J. Gooßen,
N. Rodriguez and K. Gooßen, Angew. Chem., Int. Ed., 2008,
47, 3100; (b) W. Dzik, P. Lange and L. Gooßen, Chem. Sci.,
2012, 3, 2671.
6 Representative examples of coupling of esters: (a) K. Amaike,
K. Muto, J. Yamaguchi and K. Itami, J. Am. Chem. Soc., 2012,
134, 13573; (b) R. Takise, K. Muto, J. Yamaguchi and K. Itami,
Angew. Chem., Int. Ed., 2014, 53, 6791; (c) K. Muto,
J. Yamaguchi, D. G. Musaev and K. Itami, Nat. Commun.,
2015, 6, 7508; (d) N. A. LaBerge and J. A. Love, Eur. J. Org.
Chem., 2015, 25, 5546; (e) R. Takise, R. Isshiki, K. Muto,
K. Itami and J. Yamaguchi, J. Am. Chem. Soc., 2017, 139,
3340; (f) T. Okita, K. Kumazawa, R. Takise, K. Muto,
K. Itami and J. Yamaguchi, Chem. Lett., 2017, 46, 218; (g)
L. Guo, A. Chatupheeraphat and M. Rueping, Angew.
Chem., Int. Ed., 2016, 55, 11810; (h) L. Guo and
M. Rueping, Chem.–Eur. J., 2016, 22, 16787; (i) X. Pu, J. Hu,
Y. Zhao and Z. Shi, ACS Catal., 2016, 6, 6692; (j)
T. B. Halima, W. Zhang, I. Yalaoui, X. Hong, Y. F. Yang,
K. N. Houk and S. G. Newman, J. Am. Chem. Soc., 2017,
139, 1311; (k) T. B. Halima, J. K. Vandavasi, M. Shkoor and
S. G. Newman, ACS Catal., 2017, 7, 2176; (l) L. Hie,
N. F. F. Nathel, X. Hong, Y. F. Yang, K. N. Houk and
N. K. Garg, Angew. Chem., Int. Ed., 2016, 55, 2810.
In summary, we demonstrated that Hazari's (h3-1-t-Bu-indenyl)
Pd(IPr)(Cl) precatalyst shows unprecedented reactivity in the
Suzuki–Miyaura cross-coupling of amides and esters by selec-
tive C(acyl)–N and C(acyl)–O cleavage. The potential of this
catalyst system is illustrated by the rst example of high
yielding cross-coupling of amide and ester electrophiles at room
temperature. This study demonstrates for the rst time the
selective C(acyl)–N and C(acyl)–O cleavage/C–C coupling under
the same reaction conditions. The reactivity of generic amides
and aryl esters can be correlated with barriers to isomerization
around the C(acyl)–X bond (X ¼ N, O). This study provides
a blueprint for the development of a broad range of novel
coupling reactions by avoiding restriction to a particular acyl-
metal precursor.
Acknowledgements
P. L. thanks the China Scholarship Council (No. 201606350069)
for a fellowship. Financial support was provided by Rutgers
University. The 500 MHz spectrometer was supported by the
NSF-MRI grant (CHE-1229030). We thank the Wroclaw Center
for Networking and Supercomputing (grant number WCSS159)
and the NSF (CAREER CHE-1650766).
Notes and references
¨
1 (a) A. de Meijere, S. Brase and M. Oestreich, Metal-Catalyzed
Cross-Coupling Reactions and More, Wiley, New York, 2014; (b)
G. Molander, J. P. Wolfe and M. Larhed, Science of Synthesis:
Cross-Coupling and Heck-Type Reactions, Thieme, Stuttgart,
2013; (c) C. C. C. Johansson-Seechurn, M. O. Kitching,
T. J. Colacot and V. Snieckus, Angew. Chem., Int. Ed., 2012,
51, 5062.
7 Representative examples of coupling of amides: (a) L. Hie,
N. F. F. Nathel, T. K. Shah, E. L. Baker, X. Hong,
Y. F. Yang, P. Liu, K. N. Houk and N. K. Garg, Nature, 2015,
524, 79; (b) N. A. Weires, E. L. Baker and N. K. Garg, Nat.
Chem., 2016, 8, 75; (c) B. J. Simmons, N. A. Weires,
J. E. Dander and N. K. Garg, ACS Catal., 2016, 6, 3176; (d)
This journal is © The Royal Society of Chemistry 2017
Chem. Sci.